NAVAL POSTGRADUATE SCHOOL
Monterey, California

D-A283 607
Illlll\llllll\lllll\llll\lll\\llll“lilllllll

94-~26 THESIS
L It | l!ll!”lllllll N

NODE TO PROCESSOR ALLOCATION FOR LARGE
GRAIN DATA FLOW GRAPHS IN
THROUGHPUT-CRITICAL APPLICATIONS
by
John P. Cardany

June 1994

Thesis Advisor:) Shridhar B. Shukla

Approved for public release; distribution is unlimited.

DITIG Quanady orsiSD L,

94 8 23 037

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE
Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188
1s- REPORT SECURITY CLASSIFICATION 16. RESTRICTIVE MARKINGS
UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REFORT
[25 DECLASSIFICATION/DOWNGRADING SCHEDULE
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 'S. MONITORING ORGANIZATION REPORT NUMBER(S)
6a. NAME OF PERFORMING ORGANIZATION 6. OFFICESYMBOL | 7a. NAME OF MONITORING ORGANIZATION
(f spplicable)
Naval Postgraduate School ECE Naval Postgraduate School
6c. ADDRESS (City, State, and ZIP Cade) 7o. ADDRESS (City, Stass, sad ZIP Code)
Monterey, CA 93943-5000 Monterey, CA 93943-5000
8a. NAME OF FUNDING/SPONSORING . OFFICESYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENTNO. | No. NO. ACCESSION NO.
11. TITLE (Inchude Security Classification) -
Node to Processor Allocation for Large Grain Data Flow Graphs in Throughput-Critical Applications (U)
12. PERSONAL AUTHOR(S)
Cardany, John Paul
13a. TYPE OF REPORT _ 1%. TIME COVERED 14. DATE OF REPORT (Y ear Mosth Day) 15. PAGE COUNT
Masters Thesis ROM _____TO June 1994 95

16, SUPPLEMENTARY NOTATIGN
The views expressed in this thesis are those of the author and do not reflect the official policy or position of

the Department of Defense or the U.S. Government.
17. QOSATI CODES 18. SUBJECT TERMS (Coatiste ou roverss if accomary asd identify by block sumber)

FELD GROUP SUB-GROUP

Revolving Cylinder (RC), Start after Finish (SAF),
Large Grain Data Flow (LGDF) Graphs , Node Allocation
19. ABSTRACT (Contisue on reverss if scceasary and ideatify by block sumber)

This thesis describes the issues involved in node allocation for a Large Grain Data Flow (LGDF) model
used in Navy signal processing applications. In the model studied, nodes are assigned to processors based on
load balancing, communication / computation overlap, and memory module contention. Current models using
the Revolving Cylinder (RC) technique for LGDF graph analysis do not adequately address node allocation.
Thus, a node to processor allocation component is added to a computer simulator of an LGDF graph model. It
is demonstrated that the RC technique, when proper node allocation is taken into account, can improve overall
throughput as compared to the First-Come-First-Served (FCFS) technique for high
communication/computation COSts.

2. DISTRIBUTION/AV AILABILITY OF ABSTRACT 21, ABSTRACT SECUKITY CLASSURCATION
[x] wwcLassmeanares [Jsaeaswer. [Joncuvsms | Unc

22s. NAME OF RESPONSIBLE INDIVIDUAL - 22. TELEPHONE (lackede Ares Cods) Zc. OFFICE SYMBOL
Shukla, Shridhar B. (408) 656-2764 EC/Sh

DD Ferm 1473, JUN 86 Previous editions are cbeclete.

S/N 0102-LF-014-6603 Unclassified

Approved for public release; distribution is unlimited

Node to Processor Allocation for Large Grain Data Flow Graphs in
Throughput-Critical Applications

by
John Paul Cardany
Lieutenant, United States Navy
B.S., University of Washington, 1987

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRCAL ENGINEERING
from the
NAVAL POSTGRADUATE SCHOOL
June 1994

o PQ—/&L

John P. Cardany

Approved by: W’V"‘M

Shridhar B. Shukla, Thesis Advisor

Py Zofon.

Amr Zaky, Second-Rfader

Wfﬂﬁﬂvgp«

" Michael A. Morgan, Cl{girman
DepanmentofﬂectmalandCompmerEngmeenng

ABSTRACT

This thesis describes issues involved in node allocation for a Largc Grain Data Flow
(LGDF) model used in Navy signal processing applications. In the model studied, nodes
are assigned to processors based on load balancing, communication / computation overlap,
and memory module contention. Current models - -3 the Revolving Cylinder (RC)
technique for LGDF graph analysis do not adequately adn~:ss node allocation. Thus, a
node to processor allocation component is added to a computer simulator of an LGDF
graph model. It is demonstrated that the RC technique, when proper node allocation is
taken into account, can improve overall throughput as compared to the firsi-come-firs*-
served (FCFS) technique for high communication / computation costs.

Accesion For

NTIS CRA&I g
DTIC TAB
Unannounced 0O
Justification

By
Distribution

Availability Codes

, Avail and|or
Dist Special

4l |

TABLE OF CONTENTS

LINTRODUCTIONcccttiinniiniieniareruinsniiesreiercisssnsessssssesssassesssssaoses 1
A. BACKGROUND........cceuiimmirmiirunieemeeeneriacionscsssssssenssssosessannss 1

B. THESIS SCOPE AND CONTRIBUTIONcccccovuiruuirueinncencrenncanes 2

C. THESIS ORGANIZATION.......ccveturirmuienirnnsenesrenssessrssersncssssannne 2

IL. ISSUES IN ALLOCATION OF NODES.........cccctieutiimmiruicrneniensenncenssancnns 3
A. PROBLEMS WITH CURRENT ALLOCATIONcccocuciuuimnieniencnnnenns 3

B. ISSUES ADDRESSEDcccceutieruermucenncsensiensiencesssreesceassencaness 6

1. Load Balancing...........ccccceeiimncenncenenmennrencressrasrasssossssescosnes 6

2. OVerlap..........ceuniiiiiiiiiriitttcr et s sae s e s ane e 6

3. Memory Contention.......cccceeceeeecrreecsoreenencsecennvsscrernssserssnasesses 9

C. WRAP-AROUNDccoeuiiimiiineiimecieniosssrncssssesssecsssssnssssssssossasse 9

III. ALGORITHM FOR NODE ALLOCATIONccccccotuecimmecrnnccanescerasssoncene 15
A. OVERLAP.........ccocrtirtuninnirecrsnserecsiasssrosciassossssssssasessrsssassans 15

B. WRAP-AROUNDcccccovuuiimriemmnneenniieniienccasccsssssnsnssssnesssssses 17
IV.RUN-TIME PERFORMANCEccccoitmutiernnnirnnucnicrsscesescnnncrnnsssessens 18
A. PERFORMANCEMETRICS.......ccccotvuerruncracesscsssoconeasarescrassananss 18

B. RESULTScccittiiirttiiiinninettisirennteessarscssssssssesssassesssnssssnnss 21

V. CONCLUSIONcoeuiitiuieetteniiienictssesceseesstrsscrassssssssssanncssanessnassaes 31
A. FURTHER RESEARCHccccovetturiiunionniinniionecinccsnncenecnsossoscanes 31
APPENDIX A. NODE ALLOCATION PROGRAM .32
APPENDIX B: PROGRAM USER'SMANUALcccctviimtniriiinnernccrncenncenns 56
APPENDIX C: SAMPLE INPUT DATAFILES.........ccccoeteurieerrenncnenncerencanes 80

oo

I. INTRODUCTION

The Revolving Cylinder (RC) technique [Ref. 1] was developed as an attempt to
enhance throughput over the First-Come-First-Served (FCFS) technique for dispatching
nodes for communication intensive applications. A computer programmed simulator based
on the Department of the Navy's AN/UYS-2 Digital Signal Processing System, also
known as the Enhanced Modular Signal Processor (EMSP) [Ref. 2], was developed to
evaluate the RC techniques with respect to such machines. In this thesis, a node to
processor allocation component has been added to the simulator.

A. BACKGROUND

Large Grain Data Flow (LGDF) graphs arc particularly suited to describing
applications where large amounts of data are generated and require predictable, periodic
processing. Thus, LGDF graphs are often used to model signal processing applications
with specific throughput requirements. LGDF graph execution can be carried out using a
balance of compile-time and run-time decisions in order to achieve the most efficient
throughput. Digital signal processing (DSP) applications lend themselves easily to
compile-time analysis because DSP applications are very specific in the computation
required for each node [Ref. 3]. The AN/UYS-2 programs use large grain data flow
execution as their run-time environment and thus can be modeled using an LGDF graph
representation.

For an LGDF graph receiving periodic input data, FCFS cannot provide uniform
throughput under high loads because the nodes receiving external data become ready
independent of other nodes in the graph and thus the nodes higher in the graph become
ready before the lower nodes in the graph. This results in system congestion and causes a

decrease in throughput. The RC technique adds graph dependencies to the nodes in the
graph thus reducing or climinating this congestion to ensure a more uniform throughput.

The FCFS scheduling technique places nodes into the system based on when the
nodes are ready. Thus FCFS cannot benefit from compile-time efforts in scheduling nodes
nor does it bind nodes to specific processors for execution. In previous applications of the
RC technique, graph dependencies were added at compile-time based on node allocation
that was performed randomly. Performance with this random allocation, however, was
poorer than that provided by FCFS. Thus, in order to ensure that RC facilitates better
performance than FCFS, it is necessary to modify the generation of graph dependencies
using the RC technique based on the node to processor allocation.

B. THESIS SCOPE AND CONTRIBUTION

This thesis describes an algorithm for allocation of nodes to processors for an LGDF
graph. A real application modeled as an LGDF graph is studied, based on a signal
correlator graph representing an actual application running on the AN/UYS-2. Results are
generated using the node allocation program as well as previously developed software and
comparisons made between the First-Come-First-Served (FCFS) technique and the
Revolving Cylinder (RC) technique.

C. THESIS ORGANIZATION

Chapter II describes the issues involved in node allocation for improving the
performance of the LGDF. Included are the problems existing with current allocation
methods and the issues addressed as a result of these deficiencies. Chapter III gives a
description of the algorithms used in the node allocation program as they relate to the issues
in Chapter Il. Chapter IV presents the analysis of data generated from several scheduling
methods. Chapter V summarizes the results, presents conclusions drawn from the data
analysis, and provides topics of further study.

II. ISSUES IN ALLOCATION OF NODES

There are several issues relating to the task of node allocation. In the model discussed
in this thesis, nodes are assigned to processors based on several factors, such as load
balancing, overlap of communication and computation, and contention between nodes for
memory modules. Each of these is impo:tant and a delicate balance between these factors
must be accomplished in order to achieve maximum utilization of the processors.

A. PROBLEMS WITH CURRENT ALLOCATION

Node allocation in the general sense refers to the binding of nodes to specific
processors for execution based on certain criteria. Allocation is separate from scheduling
which refers to determining the time at which the node executes on the processor to which
itis allocated. Without proger node allocation, the processors cannot execute at their most
efficient level, and throughput for the data flow graph is reduced as a result. To
demonstrate this, the programs in Appendix A and [Ref. 4] were used on a test data flow
graph, illustrated in Figure 2.1, to allocate nodes and simulate the data flow graph.

The graph shows two input/output processors and 13 nodes. Even numbered nodes
were assumed to have two times the number of execution cycles as 0dd numbered nodes.
Each individual queue's produce, consume, write, and read amounts were considered
equal; however these values differed over different queues. These are the values shown on
the queues in Figure 2.1. The queue capacity was equal to eight times the queue threshold.
The simulation was run with three processors and no setup or breakdown latency for the
nodes was assumed. In addition, the scheduler latency was zero and the communication
time for one word was five cycles. The simulation was run first without node allocation,
i.c., the nodes are assigned to processors without regard for satisfying the criteria
described above, and then with proper node allocation. In the first case, the nodes were

allocated dynamically at run-time based on which node was ready and which processor was
free. In the second case, the nodes were allocated statically at compile-time based on load
balancing, queue contention, and memory module contention. The results are compared in

the graph of Figure 2.2. Note the lower utilization rate of the execution unit of the

processor for the simulation without node allocation as well as the lower throughput.

2000 2000

Figure 2.1. Test Data Flow Graph

Nwithout sllocation
B with allocation

095}

09

0s} §\\\

AN
Throughput

08

Figure 2.2. Improvement With Allocation Over No Allocation

B. ISSUES ADDRESSED
1. ioad Balancing
In order to ensure the processors are being fully utilized, it is important to ensure
that the nodes executing across processors are balanced with respect to execution and/or
communication times. Since the emphasis of the node allocation algorithms is based upon
maximization of the execution unit utilization, load balancing for the processors will focus
mainly on the execution time of the nodes. Load balancing is achieved by statically
assigning nodes to processors based on execution times of the nodes, attempting to
maintain the same number of execution cycles per processor.
2. Overlap
Overlap of communication and computation is important to the LGDF modcl of
computation. The system contains both a control unit and an execution unit per processor.
It is desirable to utilize both of these units in a way that permits use of the execution unit to
the fullest extent possible. This is achieved by overlap of communication and computation.
There are two conditions which must be met for nodes to overlap sufficiently such that the
execution unit is utilized to the fullest extent possible. For two nodes j and j+1, where

node j executes on the processor before node j+1, the following two conditions should

exist:
execution; 2 setupj,. (1)
and
breakdown; < execution;,, 2
Ideally, perfect overlap of communication and computation is desired, such as
that shown in Figure 2.3.

node 1 node 2
assigned assigned
CONTROL node 1 node 0 node 2 node 1
UNIT setup breakdown | setup breakdown
EXECUTION nhodeO node 1 node 2
UNIT execute execute execute

Figure 2.3. Ideal Communication / Computation Overlap [Ref. 2]

node 1
assigned
CONTROL node 1
UNIT setup
EXECUTION node0 node 1
UNIT execute execute

Figure 2.4. Typical Communication / Calculation Overlap [Ref. 2]

In this figure, it is assumed that node O has been executing for some time before
node 1 is assigned. Here there are no idle or blocked cycles on the processor, since nodes
can progress immediately from input (setup) to execution to output (breakdown). Note that
both condition (1) and condition (2) are met for all nodes and the execution unit is operating
continuously. This, however, is not always the case in reality, as shown in Figure 2.4.

In Figure 2.4, there is contention for the execution unit since node 2 has
completed input but cannot progress to the execution unit because node 1 is still executing.

This results in blocked cycles until node 1 has finished executing. In addition, idle cycles

noc!e 1 node 2 node 3
assigned assigned assigned
CONTROL node 1 node 0 node 2 node 1 | node 2} 04e 3
UNIT setup | breakdown| setup break- | break- | copyp
down down
EXECUTION node 0 nodel |nodel
UNIT execute execute blocked

Figure 2.5 Poor Communication / Computation Overlap [Ref. 2]

may also exist, such as above, where node 1 has finished breakdown but node 2 is still
executing and does not yet require the control unit. It is desirable to limit the blocked and
idle times to maximize overlap wherever possible. In addition, a situation may also occur

where there is poor overlap, such as that in Figure 2.5.

In this figure node 2 has not completed setup after node 1 finishes execution, and
node 1 must therefore wait for access to the control unit, creating idle cycles on the

execution unit. In addition, node 1's breakdown is longer than node 2's execution. This

results in additional idle cycles, since node 2 must breakdown and node 3 must setup
before the execution unit is utilized again.
3. Memory Contention

The memory modules are the representation for the system memory [REF 1].
Each processor must address memory modules to transfer data to or from a node during a
read or write operation, respectively. Each queue in the data flow graph is assigned a
memory module either by the user or arbitrarily by the scheduler. Only one processor can
access a given memory module at any one time. It is possible however, for a processor to
be accessing a memory module (either reading or writing) while another processor is
attempting to utilize the same memory module. This is memory contention. Thus the
processor which is attempting to access the memory module must wait until the memory
module is free. This delays the completion of the graph and affects throughput. Memory
contention can be reduced or avoided by ensuring that sufficient memory modules exist to
fulfill the requirements of all the queues of the graph. Alternatively, queues can be mapped
on the available memory modules such that this contention is minimized.

C. WRAP-AROUND

Wrap-around is a technique used to maximize the overlap as permitted by the RC
approach by statically ‘'wrapping' the breakdown time of the last node to the idle or blocked
time at the head of a cylinder. An example will better illustrate this principle. Figure 2.5 is
a static representation of a cylinder with three nodes on a single processor.

Control Unit Execution Unit
setup idle
Setupj+1

execute j
™1 idie
breakdown .
w J
r executej +1
; Setp 142

i i) execute ;
e j+2

breakdown j+ idle

Figure 2.5. Cylinder Without Wrap-Around
Both control unit and execution unit are shown. Note that because node j+1's setup
time is shorter than node j's execution time, blocked cycles result on the control unit. If
node j+2's breakdown time is sufficiently short such that node j+2's breakdown time can
be placed in the blocked cycle time, the cylinder length is reduced and the number of
blocked cycles are reduced, increasing control unit utilization. The resultant cylinder is
shown in Figure 2.6.

10

Note that the iteration index of node j+2's breakdown has changed to indicate that the
breakdown is now from a previous iteration. The goal of wrap-around is to attempt to
shorten the length of the cylinder by an amount equal to the length of the breakdown time
of the last node without extending the length of the execution unit.

Control Unit Execution Unit
sctup; idle
Setp 41
execute j
breakdown +2 (-1)
bteakdown j
execntej +1
Setup 42
breakdown . +1
J execute;, 5
idle

Figure 2.6. Cylinder With Wrap-Around

In general, for one or two nodes j (and j+1) executing on a processor where node j
executes before node j+1, wrap-around is possible if:
setup;,) + breakdown; + breakdown;,; < execution; + execution;,,
as long as at least condition (1) is satisfied.

For three or more nodes on a processor, the general case becomes more complicated,
because there is a potential for the third node's setup time to occur during the second
node’s execution time. In this case, wrap-around is dependent on which condition(s) listed
above is (are) satisfied.

Let there exist nodes j, j+1, j+2, and j+N, where j is the first node, j+1 is the second
node, j+2 is the third node, and j+N is the last node on a processor with N nodes. For

11

exactly three nodes on a processor, j+N and j+2 are synonymous. There are three cases

for wrap-around:

Case 1: only condition (1) is satisfied. Figure 2.7 illustrates this case. Here, since
node j's breakdown is greater than node j+1's execution time, node j+2's setup time cannot

be overlapped with node j+ ''s execution time. Thus, wrap-around is possible if:
setup;,; + breakdown;,Ny s execution;

Control Unit Execution Unit
setup idle
setup;,)
execute j
execute j +1
breakdown j
breakdown j +1 idle
setup;+2
[]
o [
[

Figure 2.7. Wrap-Around (Case 1)
Case 2: only condition (2) is satisfied. Figure 2.8 illustrates this. For this condition
wrap-around cannot occur at all, since doing so would extend the length of the execution

unit.

12

Control Unit Execution Unit

execute J
Setp;4 1
blocked j
breakdown j
execute j+1
setupj42
breakdown j+
execute j+2
idle
°
™ °
°
- —

Figure 2.8, Wrap-Around (Case 2)

13

Case 3: both condition (1) and (2) exist. This case is shown in Figure 2.9. For this
case wrap-around is possible if:
setup,,, + breakdown; + setup,,, + breakdown ,y s execution; + execution,,

Note that if neither condition (1) nor condition (2) applies, wrap-around is not possible.

Control Unit Execution Unit
setup; idle
setup j+1
execute J

breakdown;, &Y

breakdown ;
J emmj.,,l
sctup;;2
an+1 execute j+2
idle
M
))
)

Figure 29. Wrap-Around (Case 3)

14

IIL ALGORITHM FOR NODE ALLOCATION

This chapter discusses the particular node allocation algorithm that addresses the issues
discussed in the previous chapter within the concept of the LGDF model. Initial allocation
of the nodes to processors is accomplished by the user, taking into account proper load
balancing. The remaining issues are handled by the algorithms discussed below.

A. OVERLAP

Overlap is accomplished by first taking each processor individually and scheduling the
node with the greatest execution time first. This algorithm is illustrated in Figure 3.1. The
nodes are then scheduled on each processor with regard to overlap as in Figure 3.2,

Figure 3.1. Execution Cycle Scheduling Algorithm
In the overlap algorithm, the second node on the processor is initially compared to the
first node. If the setup of the second node is less than the execution time of the first node,
then overlap can occur and the second node is scheduled after the first node.

15

fori =1 to total_number_of _processors
for processor P;
j=1
k=j+l
schedule
while node j != NULL
while execution j < sewpy
k=k+1
end while
temp = node j+1
node j+1 =node k
node k =temp
j=j+l
end while
end for

end for
_— ﬁ

Figure 3.2. Overlap Algorithm

If this condition is not true, the following node on the processor is then compared to
the first node and this process continues until a suitable node is found or until all nodes on
the processor have been checked. If all nodes on the processor have been checked and
none are found suitable, or if a node has been found which meets the conditions, the node
is scheduled and this node is then compared to the remaining nodes. This process
continues until all nodes on the processor have been exhausted. This scheduling method is
performed on each processor in turn. It is assumed that since the nodes are initially
scheduled in decreasing order of execution that the breakdown of the previous node will
likely be less than the execution time of the next node.

16

B. WRAP-AROUND

The wrap-around algorithm is shown in Figure 3.3. For each processor, the
breakdown time of the last node is taken and summed with the setup time of the second
node and the breakdown time of the first node. This sum is compared to the sum of the
execution times of the first and second nodes. If the sum of the setup and breakdown times
is less than the sum of the execution times, the last node breakdown time can be wrapped-
around. There are several other conditions which can also occur. Typically, for more than
three nodes scheduled on a processor, it is possible for the setup time of the third node to

fori =1 to total_number_of _processors
for processor Pj
j=1
if breakdown j + setup;, | + breakdown j4N <= execution j + execution j,.)
start breakdown s,y @ (setup j + breakdownj + setup;y) cycles

end if
end for

end for

Figure 3.3. Wrap-Around Algorithm

occur during the execution time of the second node after the breakdown of the first node.
In this case, the setup time of the third node is also summed with the setup time of the
second node and the breakdown times of the first node and the last node.

17

IV. RUN-TIME PERFORMANCE

This chapter describes the results for use of the revolving cylinder algorithm. The
programs used for gencration of the results are fully described in Appendix B. Figure 4.1
is a graphical summary of the programs and their related inputs and outputs.

A. PERFORMANCE METRICS

The performance evaluations for the RC technique were generated using an actual
application graph called a correlator [Ref. 4]. This graph is illustrated in Figure 4.1. The
RC technique that was analyzed was the start after finish (SAF) technique. The results
from this technique were compared to an FCFS scheduling algorithm. Simulations were
performed on cylinders generated for both wrap-around and non wrap-around techniques.

Several initial assumptions were made for the RC cylinders. The scheduler latency,
node setup and breakdown latency, and instruction size were assumed to be zero. The
read, write, produce, consume, and threshold amounts for an individual queue were
assumed to be equal. The queue capacity was calculated as eight times the queue threshold.
Nodes were manually allocated to processors based on load balancing and minimizing
queue contention; that is, no processor would simultaneously access the same queue for
reading and writing. As many memory modules as necessary to completely eliminate
memory module contention were then assigned to processors. The number of memory
modules required was based on the static representation of the cylinder generated by the
scheduler and mapping programs. Eight processors were used in the system and the node
to processor allocation was identical throughout the simulations.

18

< NODES.IN >

vy V¥

Coumues) PRoCIN

schedule

-’(cyl_stats.out)
—>(proc_stats.out)

o cylinder.out wrap? D (suMmarY.ouT)+—

.

»{ generate
-

Yy Vv

simulate r.(mansou)
endtimes.out
stasout)

@~ }

> (NODES_SNB.OUT)

(con_EXE.OUT)

(coN_uNTT.OUT)=—
(Exe_unrT.OUT)e—

(' NopEsour)e—
(rrocsour)e—
(cuans.our)ye—

a—{(cylinderdat)a—

Figure 4.1. Revolving Cylinder Program Summary

TaR=C=16384 TaR=Cx16384
° BAND1=15000 BAND2=15000
T=R=C=»16384 TuR=C=16384
° FIR1=10000 ° FIR2=10000
Ta=R=C4096 TeR=Cnd096
o FFT1=100000 0 ZEROFILL=5000
T=R=C=4096 TaR=Cn4096
WINDOW 1=40000 @ FRT2=100000
TuR .- T=R=Cn4096
MULTXY=7500 Q ToRaCa0%6 11) WINDOW2=40000
T-R=Cot036 POWERX=100000 Q TeR=C=4096 '?@"%Y'
oo TaR=Cok Re=Cet
T=ReCn2052 @ MULTPWR, SQRT=3000
INTEGRATE=80000 TuRaCed
Q T=R=C=513
TeR=C=513
ASCANOUT=10000 Q 20 JGRAMOUT=10000

Figure 4.2. Correlator Graph [Ref. 5}

B. RESULTS

Figures 4.3 and 4.4 illustrate the normalized maximum throughput for the correlator
versus the ratio of communication cycles to computation cycles. The communication costs
used for the mapping were varied from 3 to 23 cycles to transfer one word of data from a
processor to memory. These correspond to communication/computation ratios of 0.1 to

0.77, respectively. The theoretical minimum average input period was used as the

1 —o—FCFS
~ = 095 —8—SAF - No Wrap
§__§- ;)9 —O—Mapper - No Wrap
< bbb . o
) 3 —@—FCFS New Map
E é 0.85 ?\O\ —{#—SAF - New Map
=g 08 e\ —&@—Mapper - New Map|
: -
§.§ 0.75 -
g s 0.7
§f§ 0.65 | : _
]
z § 0.6 g .
HE 055 A
0-5 2 4 Il 'l 'l 2 4 4 b 1 1 |

0.1 0.17 033 043 05 0.53 057 06 063 0.67 0.7 0.77
Ratio of Communication Cycles to Computation Cycles

Figure 4.3. Normalized Maximum Throughput vs.
Communication/Computation (No Wrap)

nommalizing factor. This normalizing factor was calculated by taking the inverse of the
ideal cylinder calculation for one instance of the graph and multiplying by 1x106. The
1x106 factor is necessary since maximum throughput is given by the simulator in instances

per megacycle.

21

The ‘'mapper’ points listed in the legend represent the maximum theoretical throughput
for the compile-time representation of the cylinder. This value is obtained by taking the
inverse of the end time of activities obtained by the map program multiplied by 1x106. In
Figure 4.4, there are two representations of the mapper. The first is a 'flat’ cylinder. Each

1 —O—FCFS
T\’\ —A— SAF - With Wrap
0.95 emghe— SAF - New Map
) —Q— Mapper Flat
09 ~—>¢— Mapper-Jagged
S3) —a@— Mapperf-New Map
g.-g' 0.85 —3i— MapperJ-New Map
A
g g)
£ 0.8
e g
=
gE 075
= =
=
= 0.7
e
-‘-é E 065
=
0.6
0.55
05 +——+—+—+—+—+—+—+—+—+—+—+—
0.1 0.17 0.33 0.43 0.5 0.53 0.57 0.6 0.63 0.67 0.7 0.77
Ratio of Communication Cycles to Computation Cycles

Figure 4.4. Normalized Maximum Throughput vs.
Communication/Computation (With Wrap)

static cylinder slice of the graph ends at different time, represented as a number of cycles.
The 'flat’ cylinder takes the greatest end time of all cylinder slices and uses that value as the
average end time of the graph. This means if a cylinder slice ends before this average end
time, idle cycles may be added to the execution unit, thereby decreasing the calculated

22

throughput. The 'jagged' cylinder, however, takes into account each individual cylinder
slice end time, and uses the average of the end times over all cylinder slices as the average
end time. Thus, maximum throughput for the jagged' cylinder is greater than the ‘flat’
cylinder.

In both Figure 4.3 and Figure 4.4, note that as communication costs increase, SAF
results in better throughput than FCFS. This is due to the ability in SAF to map the nodes
to minimize contention [Ref. 2].

Since the node to processor allocation was identical throughout the simulations, it was
desirable to see if different allocation at various communication costs would have an effect
on throughput. A scparate node to processor allocation was tried for 15 and 20 cycles to
transfer onc word of data from a processor to memory. The allocation of nodes was
modified only slightly, i.e., only one node was allocated to a different processor. These
points are indicated in Figures 4.3 and 4.4 as 'New Map'. It is clear for both wrap and no
wrap cases that the revolving cylinder values (SAF and mapper) are affected by slight
changes in the node allocation.

Figures 4.5 and 4.6 represent the normalized response time and the coefficient of
variation of normalized response time for both the no wrap and wrap cases, respectively.
The normalizing factor used in Figure 4.5 is the number of execution cycles required for
the completion of one iteration of the critical path of the graph. Note that the response time
for SAF (both no wrap and wrap cases) is lower than FCFS at high communication costs.
Note also that although SAF no wrap has a slightly better response time than with wrap at
high communication costs, modifying the node to processor allocation (New Map) has a
significant affect on the no wrap case. Thus, it is possible to improve the response times
for both cases by changing the node allocation.

The coefficient of variation represented in Figure 4.6 is a measured comparison
between the response times of all graph instances to the average response time. The lower
this number, the closer the measured response times are to the average [Ref. 2). SAF with

23

T

wrap appears to have the best overall performance as measured by coefficient of variation
throughout the range of communication costs. Again, however, modification of the node
to processor allocation significantly affects the results, thus indicating that coefficient of

variation could be improved over FCFS for both SAF cases.

8
7.; Kﬁ/ﬁ—"‘"{\
~ ¢ 65
g.§ 6 VA .G -
=055 —a o=\ B o 2
g8 s s A
BE .3
@l 4
G & —0—FCFS
;E 3'3 y [I ~—8—SAF - No wrap
£ 25 —A— SAF - With wrap
g § 2 —— SAF-No Wrap-
BZE 15 New Map
1 ~—g— SAF-Wrap-New
0.5 Map
0 $ 4 $ $ 4 $ $ $ + } {
0.1 0.17 0.33 043 0.5 0.53 0.57 0.6 0.63 0.67 0.7 0.77
Ratio of Communication Cycles to Computation Cycles

Figure 4.5. Normalized Response Time vs. Communication/Computation

Figures 4.7, 4.8 and 4.9 represent normalized maximum throughput for
communication costs of 3 cycles, 5 cycles, and 15 cycles versus load. Load in this case is
based on fractional multiples of the maximum throughput case (1.0 in the figure). These
multiples correspond to a range of graph input from severe lack of input data to overflow of
data. From these figures, SAF results in slightly better overall throughput at higher graph
loads versus FCFS. Although SAF no wrap performs better than SAF with wrap at low
communication costs, SAF with wrap achieves a higher overall throughput over SAF no
wrap and FCFS at high communication costs for the entire range of loads, which is the

desired result.

24

03 . —&-—-FCFS]
"~ | —8—SAF - No wrap
0.275 4 —A—SAF - With wrap
025 4 —i-—SAF-No Wrap-
0.225 J New Mﬂp
02 | -‘-—&;:I; Wrap-New | [
0.175
0.15
0.125
0.1
0.075 /
0.05
0.025
0::::—::::::4
0.1 0.17 0.33 043 0.5 0.53 0.57 0.6 0.63 0.67 0.7 0.77

Ratio of Communication Cycles to Computation Cycles

Graph Response Time

Coefficient of Variation for

Figure 4.6. Coefficient of Variation VS, CommnnicationIComputation
F’ ‘\

04 0.6 0.7 0.8 1 1.2
Load (Data Input Rate as a Multiple of
Simulated Maximum Throughput)

Figure 4.7. Normalized Maximum Throughput vs. Load (3 C cles/Word)
.10 CommuniuﬁonICthputaﬁon) y

25

0.8
0.775
0.75

W
0.725 \ / \

0.675 SN

0.65

(=]
~

——FCFS
~—E-—SAF - No wrap
0.575 —7A—SAF - With wrap|
0.55
0.525
0.5

o
QO\
o

Simulated Maximum Throughput /
Theoretical Maximum Throughput

-
e
-
e
‘.

04 0.6 0.7 0.8 1 1.2
Load

Figure 4.8. Normalized Maximum Throughput vs. Load (5 Cycles/Word)
(0.17 Communication/Computation)

0.8 —o—FCFS
0.775 —8-—SAF - No wrap

0.75 —A—SAF - With wrap
0.725

o
Q

0.675

0. 625

o §
o

0.575
0.55
0.525
0.5

Simulated Maximum Throughput /
Theoretical Maximum Throughput
=)
a

"
L]

ol

04 0.6 0.7 0.8 1 1.2
Load

-_

Figure 4.9. Normalized Maximum Throughput vs. Load (15 Cycles/Word)
(0.50 Communication/Computation)

26

Figures 4.10, through 4.15 illustrate normalized response time versus load and
coefficient of variation versus load for the same communication costs as the three previous
figures. From these figures, SAF is shown to have the best overall response time and
lowest coefficient of variation throughout the range of load.

6;’ —o—FCFS
p —8—SAF-Nowrap [~
<8 55 —A—SAF - With wrap
(37 .
i__g_é‘ 5
.§ 45
1K
3.5
&’g 3 N\
BE 25 AN
= AN
q 2
£ 5
m5]
0.5
0 3 + $ } -]
04 0.6 0.7 0.8 1 12
Load

Figure 4.10. Normalized Response Time vs. Load (3 Cycles/Word)
(0.10 Communication/Computation)

6; —o—FCFS
.6 —8—SAF - No wrap
15
1k
8 N\
$d 3 ANY
BE 25 A\
2% 2
E3 15 _
(7]
S
0.5
0 } — } 4 i
0.4 0.6 0.7 0.8 1 12

Figure 4.11. Normalized Response Time vs. Load (5 Cycles/Word)

(0.17 Communication/Computation)

=)

(Y]

H»

N

[

O

Simulated Response Time /
Critical Path Execution Cycles
camtanbuwrabuwire ou

——FCFS
. +__ —8—SAF - No wrap
&\§ —f—SAF - With wra

\

\
AN\

AN\N

AN\
04 0:6 0.7 0:8 l l.'2

Load

Figure 4.12. Normalized Response Time vs. Load (15 cycles/Word)

(0.5 Communication/Computation)

28

0.3 {{—e—FCFs

0275 H —8—SAF - No wrap

0.25 4

§

&

(=
p—t
-3
(7.1

-=
ot
(V]

0.075

CoefTicient of Variation for
Graph Response Time
=)
)

=4

Figure 4.13. Coeflicient of Variation vs. Load (3 Cycles/Word)
(0.10 Communication/Computation)

03 +{—e—FCFs

0275 4{ —8—SAF - No wrap

025 | —A—SAF - With
S y 0225 \
g = 02 \
§ g 0.175 \N
< 8 0.15 \
£% 0125
5E 01 .
§5 0.075

0.05

0.025 -

0 ' ' + ;
0.4 0.6 0.7 0.8 1 1.2
Load

Figure 4.14. Coefficient of Variation vs. Load (5 Cycles/Word)
(0.17 Communication/Computation)

29

o
w

i
m
g

0.275 -

=3
k&

tion for

(=
X

0.175 -
0.15

AN\

=
°~
= O

Graph Response Time

Coefficient of V.
o
S
W

0.05

g

04 0.6 0.7 0.8 1 1.2
Load

Figure 4.15. Coefficient of Variation vs. Load (15 Cycles/Word)
(0.5 Communication/Computation)

V. CONCLUSION

This thesis described the issues involved in node allocation and described a program
implemented to resolve those issues. An addition to the RC technique, wrap-around was
also analyzed as an improvement to the compile-time implementation of the graph.

A revolving cylinder technique, start-after-finish, was studied and compared to the
First-Come-First-Served technique for a large grain data flow graph model. It was
demonstrated that RC provides overall better throughput than FCFS, particularly at high
communication costs. In addition, it was shown that the RC technique is sensitive to
cylinder mapping, especially at high communication costs. Thus, it is important in the
analysis of the RC technique to optimize the mapping for each instance of communication

cost.

A. FURTHER RESEARCH

There were several initial assumptions that were made for the graph model that could
be removed for future work.

1. The number of instructions for each node was assumed to be zero. Analysis
should be conducted with variable instruction lengths.

2. Scheduler latency was also assumed to be zero. This quantity should also be
varied and its effect on the RC technique studied.

3. Since the RC results were sensitive to cylinder mapping, it would be desirable to
find an optimum cylinder mapping for each level of communication cost. From this a
heuristic could be developed such that an extra program module could be added to the
existing programs to perform this task automatically.

31

APPENDIX A. NODE ALLOCATION PROGRAM

// LIEUTENANT JOHN P. CARDANY, U.S. NAVY

// 20 APRIL 1994

/I NAVAL POSTGRADUATE SCHOOL

// ADVISORS: PROFESSORS SHRIDHAR SHUKLA AND AMR ZAKY

/] Large Grain Data Flow Node to Processor Schedule Program
{/ schedule.C

#include <iostream.h>
#include <fstream.h>
#include <iomanip.h>
#include <stdlib.h>

#include "node_alloc.h"
node_alloc cylinder; //define a cylinder as a node alloc type

int
main()

cout << "\n\nLARGE GRAIN DATA FLOW NODE TO PROCESSOR SCHEDULING
PROGRAM\n\n";

cout << "\nALLOCATING NODES...\n";

//System calls
cylinder.define, tuncsO,

cout << "\nEND OF PROGRAM\n";
return 0;

}

32

// LIEUTENANT JOHN CARDANY, U.S. NAVY

// 20 APRIL 1994

// NAVAL POSTGRADUATE SCHOOL

// ADVISORS: PROFESSORS SHRIDHAR SHUKLA AND AMR ZAKY

// Node Allocation Class Header File
// node_alloc.h

#ifndef NODE_ALLOC_H
#define NODE_ALLOC_H

#include <fstream.h>
#include <iostream.h>
#define newln \n'

<{:lass node_alloc

private:

{/ Structure to define queues
st queue_type

int queve_id;

int source_node;

int sink_node;

long write_amount;

long read_amount;

// Structure to define nodes
?tmct node_type
int nodes_per_processor;
int node_id;
long instr_size;
long setup_time;
long exe_time;
long breakdown_time;
int proc_type;
long start_time;
long end_time;

// Structure to define ORDER.IN elements
S{truct order_in_type

int node_id;
}!Ons start_time;
// User inputs to define system

33

int number_of_nodes;

/! Number of Nodes in the System

int number_of_queues; // Number of Queues in the System

int number_of_processors; // Number of Processors in the System

long latency; // Fixed Scheduler Latency

long fixed_setup; // Fixed Setup time (a)

int comm; // Communication Time for One Word of Information
long setup, breakdown; //Setup and Breakdown Times Per Node

queue_type queue[2501]; // System Queues

node_type node[250}; // System Nodes

node_type order{50][50]; //Matrix to store Node structures

node_type new_order{50][50); //Matrix to store ordered Node Structures

order_in_type ORDER[250]; //Node order matrix
public:

// Class Constructor
node_alloc();

// Function to load timing information into the system
void define_times();

// Function to read number of processors into the system
void read_processor_file();

// Function to load queue data into the system
void read_queue_file();

// Function to load the node data into the system
void change_node_file();

// Function to Order the Nodes and Create the ORDER.IN File
void order_nodes();

// Function to calculate the unused execution cycles
void calc_unused_exe_cycles();

// Function to implement wrap-around
void wrap_around();

//Function to Create cylinder file

void make_cylinder_file(long);

//Function to print processor statistics
void generate_processor_stats(int,long,long,long,long,long,long, long);

//Function to print cylinder statistics
void generate_statistics(long,long,long,long,long,long,long long);

// Function to reorder the ORDER.IN file sequentially
void sequence_nodes();

//Class Destructor
~node_alloc() {}

#endif

35

// LIEUTENANT JOHN P. CARDANY, U.S.NAVY
/1 28 April 1994

/I NAVAL POSTGRADUATE SCHOOL

// ADVISORS: PROFESSORS SHRIDHAR SHUKLA AND AMR ZAKY

// Input-Output Data Class Source File
// node_alloc.C

#include "node_alloc.h"

#include <iostream.h>
#include <iomanip.h>
#include <stdlib.h>

// Class Constructor
node_alloc::node_allocQ

{
number_of_nodes = 0;
number_of_queues = 0;
number_of_processors = 0;
comm =();

}

/ Funcu.d ion to Load Timing Information into the System
voi
x{lode_alloc::deﬁne_timcso
cout << "\nFixed Setup Time (cycles) :";
cin >> fixed_setup;
cout << "nWord Communications Time (cycles) : ";
cin >>comm;
if (fixed_setup <0 il comm <0)

cerr << "\nInvalid Communication Time\n";
exit(0);
}
}

// Function to Read the Processor File

void

t{aode_alloc: :read_processor_file()
ifstream pmcessor_m put_file;

processor_input_file ('PROCS.IN");

l{f ('processor_mpm
cerr << "\nCannot Open file PROCS.IN\n";
exit(0);

processor_input_file >> number_of_processors;

36

cout << "\nNumber of Processors: " << number_of_processors << "\n\n";
}processor_input_file.closeo;

/Il?:imctionwl.oadchwwDamFilc

l{lvg;e_alloc::xud_quew_ﬁleo

ifstream queue_input_file;

¢ ueue_inpqt_ﬁle(_.%kpen("QUEUES.IN");

{ (!queue_jnput_file)
cerr << "\nCannot open file QUEUES.IN\n";

} exit(0);
ueue_input_file >> number_of_queues;

{ r (int cnt = 0; cnt < number_of_queues; cat++)
queue_input_file >> queue] cnt }.queue_id;
queue_input_file >> queue| cnt).source_node;
queue_input_file >> queue| cat).sink_node;
queue_input_file >> queue| cnt).write_amount;
queue_input_file >> queue| cnt].read_amount;
x{f(queue| cnt].queve_id <=0)

cerr << "\nInvalid Queue ID or Wrong Quantity\n";
} exit(0);
i{f(queue[cnt).write_amount < 0 |l queve[cat).read_amount <0)
cerr << "\nlnvalid Parameter for Queue : " << setw(6);
cerr << queue]| cat].queuve_id << endl;
} exit(0);
t;or(intcntq=0;cmq<cnt;cmq-i+)
i{f (queue| cntq].queue_id == queue] cat J.quene_id)
cerr << "\nDuplicated Queue ID : " << setw(6);
cerr << queue| cat].queue_id << endl;
}exit(O);
}

}
) queue_input_file.close();
/ mF:l:m:uon to Change the Node Data File
v
x{:ode_alloc::change_node_ﬁleo

ifstream node_input_file;
node_input_file.open("NODES.IN");

37

i{f('node_input_file)

cerr << "\nCannot open file NODES.IN\n";
} exit(0);
ofstream node_output_file;
node_output_file.open("TEMP.OUT");
int n_id, 1_size, p_type;
unsigned long s_time, ¢_time, b_time; //s=setup, b=breakdown, e=execution
node_inp: >> number_of_nodes;
node_output_file << number_of_nodes << newln << newin;
for (int cnt = 0; cnt < number_of_nodes; cat++)
node_input_file >> n_id >> i_size >> s_time >> ¢_time >> b_time >> p_type;
i{f (n_id<=0)

cerr << "nInvalid Node ID or Wrong Quantity\n";
exit(0);

}
if (s_time <O lle_time <0 Il b_time <O lli_size <0)
?& ;)< "\nInvalid Parameter for Node : " << setw(6) << n_id << endl;

long setup =0;
long breakdown = 0;
?or(intcntq=0;cnuq<number_of_quenes;cntq++)
i (qucue g }source_node ==n.id)
] breakdown += (comm * queuef cntq].write_amount);
if (queue| cntq].sink_node ==n_id)
setup += (comm * queue[cntq].read_amount);

oy

Ll

}

setup += fixed_setup;
breakdown += |_setup;
s_time = setup;

b_time = breakdown;

node_output_file << n_id << setw(4) << i_size << setw(8) << s_time << setw(12) <<
e_time << setw(13)<< b_time << setw(14) << p_type << newln;

}

node_input_file.close();
node_output_file.close();

system("mv NODES.IN NODES_IN.ORG");
system("mv TEMP.OUT NODES.IN");

I/l:-‘gncﬁonto Schedule the Nodes and create the ORDERLIN file
voi
node_alloc::order_nodes()

{

mtl , count. tail_jndex, swap_index;
APP™ T_MOVE;

ifstream node_input_file;
node_input_file. open("NODES.IN"),
ofstream order_ou &)
order_output file. ORDER.IN' d
node_input_file >:i1:;nber of_nodes;

?or(mtcnt:O'cnKnumber -_of_nodes; cnt++) //Place nodes in an array

node[cnt] nodes_per_processor = 0;
ode_input_file >> node[cnt].node_ld,
node_mput_ﬁlc >> node[cnt].msn'_sme
node_input_file >> node{cnt].setup_time;
node_input_file >> node{cnt].exe_time;
node_input_file >> node[cnt].breakdown_time;
node_input_file >> node[cnt).proc_type;
node{cnt].start_time =0;

}
for (int i = 0; i < number_of_processors; i++) //Place the nodes in two 2x2 matrices
{ count =0;
for (int j = 0; j < number_of_nodes; j++)
{ i{f(node(j].proc_type == i+1)
S e o
new_order{count][i] = node{jl;

new_order{count](i].nodes_per._processor = count+1;
count++;

order{count](i).node_id = NULL;
} new_order{count][j].node_id = NULL;
}

// Order Nodes in decreasing Exe time
tior(intj=0;j<nnmber_of_processors;j++)

39

int node_index = 0;
SWAPPED = |;
vivhile (SWAPPED)
SWAPPED =0;
i{’or (i=0; i <number_of_nodes; i++)
i{f (order{i][j].exe_time < order{i+1}{jl.exe_time) /hthen swap nodes

TEMP_NODE = ordedi]{j};
order{i](j] = OMHI]D]'DB.

order{i+1][j] = :
SWAPPED = 1; //and sct a flag

}
}
}
}

// Order nodes by comparing Exe and Setup times
f{'or(j=0;j<numbcr_of_proceasors;j++)

int node_index = 0;
T_MOVE =0;

Head_pu' &order{node_index](il;
= &ordet{node_index+1}[j);
Cuxr_pu' Tail_ptr;
I{f(’l'ml_ptr->node_id==NULL)llonlyoncnode
order._ t_file << Head_ptr->node_id << setw(8) << Head_ptr->start_time
<< newin;
v{hile (Tail_ptr->node_id '=NULL) /fcheck all nodes on a processor

SWAPPED =0;
T_MOVE =0;

swap_index = node_index;
\{ln'le (Head_ptr->exe_time < Tail_ptr->setup_time) ;m nodes unitl
tail_index = swap_index + 2;
e 2 o s e i s
)
// swap Tail_ptr and Curr_ptr to put tail node in position after head node

if (T_.MOVE && Tail_ptr->node_id = NULL)

40

e AN o SR i e AR S5

{

TEMP_NODE.node_id = Curr_ptr->node_id;
TEMP_NODE.instr_size = Curr_ptr->instr_size;
TEMP_NODE.setup_time = Curr_ptr- _time;
TEMP_NODE.exe_time = Curr_ptr->exe_time;
TEMP_NODE.breakdown_time = Cutr_plr ->breakdown_time;
TEMP_NODE.proc_type = Curr_ptr->proc_type;
TEMP_NODE start_time = Curr_ptr->start_time;

Curr_ptr->node_id = Tail_ptr->node_id;
Curr_ptr->instr_gize = Tail_ptr->instr_size;
Curr_ptr->sctup_time = Tail_ptr->sctup_time
Curr_ptr->exe_time = Tail_ptr->exe_time;
Cmyrﬁ-mn.rme = Tail_ptr- >‘;eenkdown_umc.
->proc_type = Tail_ptr->proc_|
Curr_ptr->start_time = Tail_ptr->start_time;

Tail_ptr->node_id = TEMP_NODE.node_jid;
Tail_ptr->instr_size = TEMP_NODE.instr_size;
| Tail_ptr->setup_time = ‘I‘EMP_NODB.aag:_t!me;

SWAPPED =1; //set flag to indicate nodes swapped
Curr_ptr->start_time = (Head_ptr->setop_time + Head_ptr->start_time);

IlNodeswerenotswapped.onlytwonodesinmy
if (node_index==0) //node is head ptr, put node in new array

{
order_output_file << Head_ptr->node_id << setw(8) << Head_ptr-
>start_time << newin;

new_order{node_index](j].node_id = Head_ptr->node_id;
new_order{node_index][)}.instr_size = Head_ptr->instr_size;

new_order{node_index][j].setup_time = l-kachtr-xetup_
new_order{node_index][j).exe_time = Head_ptr->exe,
new_order{node_index](j]. breakdown_time = Head_pu'

fimes new_order{node_index] = Head

new_ .proc_type = _ptr->proc_type;
new_order{node_index][j].start_time = Head_ptr->start_time;

//Put node after head node into order file and array
in: order_output_file << Curr_ptr->node_id << setw(8) << Curr_ptr->start_time <<
newln;
new_adu{node_inda-i-l][i]].node_xd = Curr_ptr->node_id;
order{node_index+1][j).instr_size = Curr_ptr->instr_size;

_ordet[node_mdex+l] _time = Curr_ptr- >aemp_

Zadatnode.mdmu il-proc_type = Cnrr.m-m.type

new_order{node_index+1][j).start_time = Curr_ptr->start_time;

41

}

if (Tail_ptr->node_id '= NULL && !SWAPPED) //Nodes were not swapped,
{ //no node matches requirement
//so0 sked node after head node

Tail_ptr->start_time = (Head_ptr->setup_time + Head_ptr->start_time);

i{f (node_index =0)

order_output_file << Head_ptr->node_id << setw(8) << Head_ptr-
>start_time << newln;

new_order{node_index](j].node_id = Head_ptr->node_id;

new_order{node_index][j).instr_size = Head_ptr->instr_size;

new_order{node_index][j].setup_time = Head_ptr->setup_time;

new_order{node_index][j].exe_time = Head_ptr->exe_time;

new_order{node_index}{j}.breakdown_time = Head_ptr-
~breakdown_time;

new_order{node_index](j].proc_type = Head_ptr->proc_type;

new_order{node_index][j].start_time = Head_ptr->start_time;

}
n: order_output_file << Tail_ptr->node_id << setw(8) << Tail_ptr->start_time <<
newln;
new_order{node_index+1][j).node_id = Tail_ptr->node_id;
new_order[node_index+1][j).instr_size = Tail_ptr->instr_size;
new_order{node_index+1][j).setup_time = Tail_ptr->setup_time
new_order{node_index+1](jl.exe_time = Tail_ptr->exe_time;
new_order{node_index+1][j). breakdown_umc Tail_ptr->breakdown_time;
new_order{node_index+1](j].proc = Tail_ptr->proc_type;
new_order{node_; mdex+l]b].sun_ume Tail_ptr->start_time;

}
?lse // last node to be scheduled
i{f (Curr_ptr->node_id '= NULL && ISWAPPED) //sked last node in the array

Curr_ptr->start_time = (Head_ptr- _time + Head_ptr->start_time);

order_output_file << Curr_ptr->node_id << setw(8) << Curr_ptr-
>start_time << newln;

new, order[node_mdex+l][j] Jode_id = Cnrr_ptr->node_1d;

new_order{node_index+1](j).instr_size = Curr_ptr->instr_size;

new_order{node_index+1](j}.setup_time = Curr_ptr->setup_time

new_order{node_index+1][jl.exe_time = Cuxr_pu'->exc time;

new_order{node_index+1][j].breakdown_time = Curr_ptr-
>breakdown_time; aode. 10 C

new_order{ index+1][j}.proc_type = Curr_ptr->proc_|

} new, order[node_mdex+l][i].star:_ume = _-gu- >start tnttylPee
}

node_index++;

Head_ptr = &order{node_index][j);

Tml_ptr &order{node_index+1]{j};
Curr_ptr = Tail_ptr;

42

node_input_file.close();
| order_output_file.close(;
Ilvo(i::lwm unused execution cycles
l‘:ode_llloc: :calc_unused_exe_cycles(

node_type ‘Head_ptr ‘Tnl_pu' *Curr_ptr;
long unused_exe_cycles = 0;
long ml_umnech_cycles 0;
tior(mt;:O;J < number_of_processors; j++)
int node_index = 0;
Head_ptr = _order{node_index](j);
Tail_ptr = &new_order{node_index+1]{j);
Curr_ptr = Tail_ptr;
unused_exe_cycles += Head_ptr->setup_time
vtvhile (Tail_ptr->node_id != NULL)
int swap_index = node_index;
i{f (Head_ptr->exe_time < Tail_ptr->setup_time)
} unused_exe_cycles += Tail_ptr->setup_time - Head_ptr->exe_time;

i{f (Head_ptr->breakdown_time > Tail_ptr->exe_time)

_index + 2;
Tail.ptr &mi;[‘:g;mdﬂlﬁl.
Tail_ptr- >aemp_nme + glr”
node,_mdexﬂ,
Head_ptr = &new_order{node_index](j);

T &new node 113}
;::‘nl'_’;’r Ol'du‘[index+1](j]

i{f('l‘til_ptr->node_id=NULL&&l'lead_pu'->node_id !=NULL)

->breakdown_time - Curr_ptr->exe_time +
time;

// last node, add breakdown

} unused_exe_cycles += Head_ptr->breakdown_time;

total_unused_exe_cycles += unused_exe_cycles;
unused_exe_cycles = 0;

43

}

cout << "Total Unused execution cycles are: " << total_unused_exe_cycles << " cycles "
<< newln;

}

I/} F:lmcuon to implement the wrap-around
voi
l{mde _alloc::wrap_around()

! l.,irg 1‘_,al me. 0, total_slice_times

est_cyl_time = s
lg:gndle execZyclw =0, blocked_exe_i les=0'
long idle_ctrl_cycles = 0, blocked arl_cycles 0;
longblocked_proc ctd =0, b] _exe =0;
long idle_proc_exe =0, idle_proc_ctrl = 0;
long total_idle_proc_exe = 0, total_idle_proc_ctrl = 0;
long total_blocked_proc_exe =0, uonl_blocked_ptoc_ctd 0;
long exe_packing = 0, ctrl_packing =
node_type *Head_ptr, *Tail_ptr, *Next_ptr;
ofstream cyITime_output_file;
cylTime_output_file.open("CYLTIMES.OUT");
x{f(leylTime_output_file)

cerr << "\nCannot Open file CYLTIMES.OUT\n";
}ent(O),

ofstream slice_o
slice _output_file. open("shce time.out");
if (!slice_output_file)

(cerr << "\nCannot Open file slice_time.out\n";
}em(O)

// calculate the number of nodes on each processor
for(int k = 0; k < number_of_processors; k++)
{ int index = 0;

Head_ptr = &new_order{index](k];

}vhilc (Head_ptr->node_id '=NULL)

index++;
Head_ptr = &new_order{index](k];

)
} new_order{0)[k].nodes_per_processor = index;

t{'a(int j =0; j < number_of_processors; j++)

Head_pur = _omu{m[i] /fpoint to first node
Head_ptr->start_|

int numNodes = Head_ptr->nodes_per_processor;
long cyl_time = Head_ptr->setup_time
blocked_proc_ctrl = 0;

blocked_proc_exe = 0;

int FLAG =0, STUFFED = 0, PUSHED = (;

i{f(numNodcs =1) //Only one node on processor
cyl_time += (Head_ptr->exe_time + Head_ptr->breakdown_time);

if(Head_ptr->breakdown_time + Head_ptr->setup_time < Head_ptr->exe_time)
{ Head_ptr->end_time = cyl_time - Head_pn- >breakdown_time;
cyl_time -= Head_ptr->breakdown_time
L
{ Head_ptr->end_time = cyl_time;

l La}rgest_cyl_time = Head_ptr->end_time;

t{‘or('mti=l;i<numNodes;i++) // More than one node
Tail_ptr = &new_order{i](j]; // point to next node
Tail_ptr->start_time = cyl_time;
Next_ptr = &new_order{i+1](jl;

//Several conditions are possible which modify the way the blocked cycles are calculated

// Condition 1
if(PUSHED && Next_ptr->node_id !=0) _//PUSHED =>A node's breakdown
{ /was greater than another node's
Head_ptr = &new_order{il(j]; lfexe tme

Tall_pu' &new_order{i+1](j);

Next_ptr &new_o:duﬁ-n-l][j]
cyl_time += Head_ptr->setup_time;

Tail_ptr->start_time = cyl_time;
PUSHED = 0;

45

}

/fCondition 2
if ('FLAG && 'PUSHED) /[FLAG=>

{

i{f (Head_ptr->exe_time > Tail_ptr- _time)
cyl_time += Head_ptr->exe_time;
blocked_ctrl_cycles += Head_ptr->exe_time - Tail_ptr->setup_time;

} blocked_proc_ctrl += Head_ptr->exe_time - Tail_ptr->setup_time;

tilse
cyl_time += Tail_ptr->setup_time;
blocked_exe_cycles += Tail_ptr->setup_time - Head_ptr->exe_time
blocked_proc_exe += Tail_ptr->setup_time - Head_ptr->exe_time;

*

}
}

//Condition 3
if('STUFFED && !PUSHED) //STUFFED=> breakdown of a node and setup of
{ //next node occur during exe of another node
, Head_ptr->end_time = cyl_time + Head_ptr->breakdown_time;

//Condition 4
if(Head_ptr->breakdown_time < Tail_ptr->exe_time && 'PUSHED)

cyl_time += Tail_ptr->exe_time;
FLAG =0;
Tail_ptr->end_time = cyl_time + Tail_ptr->breakdown_time;

/iCondition 5
if((Head_ptr->breakdown_time + Next_ptr->setup_time) < Tail_ptr->exe_time
&& Nex_ftr-moaepfxd 1=0)) Zexe

FLAG=1;
Next_ptr. ot eyl ail_ptr: ail_ptr:
->start_time = cyl_time - Tail_ptr->exe_time + T -

>breakdown_time;

blocked_ctrl_cycles += Tail_ptr->exe_time - Head_ptr->breakdown_time -
Next_ptr->setup_time;

blogked_pmc_ctrl += Tail_ptr->exe_time - Head_ptr->breakdown_time -
Next_ptr->’semp_ume;

else

{
i{t‘(Next_ptr—mode_id 1=0)

STUFFED = 1;

FLAG=1; L T

Next_ptr->start_time = cyl_time - Tail_ptr->exe_time + Tail_ptr-
>breakdown_time;

blocked_exe_cycles += Head_ptr->breakdown_time + Next_ptr-
>setup_time - TmLpu'-xxe time;
blocked_proc_exe += Head_ptr->breakdown_time + Next_ptr-
>setup_time - Tai ->exe_time;
cyl_time += blocked_proc_exe
Tail_ptr->end_time += blocked_pmc_exc;

}
}
}
clse
{
i{f(Next_pu'-mode _id == 0 && PUSHED)

cyl_time += (Tail_ptr->setup_time + Tail_ptr->exc_time);
Tail_ptr->end_time = cyl_time + Tail_ptr->breakdown_time;
cyl_time = Tail_ptr->end_time;

else
if('PUSHED)

{PUSHED =1;

cyl_time += Head_otr—>breakdown_nmc

Tail_ptr->end_time = cyl_time + Tail_ptr->breakdown_time;

w Tain:;xnd% >breakdown_time - Tail_ptr- time;
exe += time - >exe_

} mw?xe += Head_ptr->breakdown_time - Tail_ptr->exe_time;

}
}

} Head_ptr = &new_order{il[j];

i{f(numNodes !=1 && !PUSHED)
} cyl_time += Tail_ptr->breakdown_time;

// Check for wrap-around condition
Head_ptr = &new_order{0](j]; // Point to first node on processor
Next_ptr = &new_order{1][j]; // Point to second node

if((Tail_ptr->breakdown_time + Head_ptr->breakdown_time + Next_ptr-
>setup_time) <= (Head_ptr->exe_time + Nexw-me_ﬁme) && Head_ptr-
>nodes_per_processor != 1 && ISTUFFED 'PUSHED)

Tail_ptr->end_time = Head_ptr- _time + Next_ptr->setup_time + Tail_ptr-

>breakdown_time;
cyl_time -= Tail_ptr->breakdown_time;

47

if (Next_ptr->setup_time + Tail_ptr->breakdown_time < Head_ptr-
>exe_time)

Head_ptr->end_time = Head_ptr->setup_time + Head_ptr->exe_time +
Head_ptr->breakdown_time;
blocked_ctrl_cycles -= Tail_ptr->breakdown_time;
} blocked_proc_ctrl -= Tail_ptr->breakdown_time;
else
Head_ptr->end_time = Tail_ptr->end_time + Head_ptr->breakdown_time;

}
else // STUFFED or PUSHED

{
i{f(STUFFED)
node_type *Third_ptr = &new_order{2](j);

if ((Tail_ptr->breakdown_time + Head_ptr->breakdown_time + Next_ptr-
>setup_time + Third_ptr->setup_time <= Head_ptr->exe_time + Next_ptr->exe_time) &&
Head _ptr-(>nodes_per_processor I=1)

Tail_ptr->end_time = Head_ptr->setup_time + Next_ptr->setup_time +
Tail_ptr->breakdown_time;
cyl_time -= Tail_ptr->breakdown_time;
if (Next_ptr->setup_time + Tail_ptr->breakdown_time < Head_ptr-

>exe_time) {
Head_ptr->end_time = Head_ptr- _time + Head_ptr->exe_time +
Head_ptr->breakdown_time;
blocked_ctrl_cycles -= Tail_ptr->breakdown_time;
} blocked_proc_ctrl -= Tail_ptr->breakdown_time;
else
Head_ptr->end_time = Tail_ptr->end_time + Head_ptr->breakdown_time;
} Third_ptr->start_time = Head_ptr->end_time;
}
t;lse
if(PUSH.ZD)
if(Next_ptr->setup_time + Tail_ptr->breakdown_time <= Head_ptr-
>exe_time)

Tail_ptr->end_time = Head_ptr->setup_time + Next_ptr->setup_time +
Tail_ptr->breakdown_time;

total_slice_times +=cyl_time; // add all cylinder times
slice_output_file << cyl_time << endl;

48

total_blocked_proc_ctrl += blocked_proc_ctrl;
total_blocked_proc_exe += blocked_proc_exe;

cylTime_output_file << j+1 << setw(8) << cyl_time << endl;

Head_ptr = &new_order{0](j};

exe_packing = 0, ctrl_packing = 0;

for (int p = 0; p <numNodes; p++) //Calculate exe and control unit packing
{ Head_ptr = &new_order{p](jl;

exe_packing += Head_ptr->exc_time;
ctrl_packing += Head_ptr->setup_time + Head_ptr->breakdown_time;

{/Calculate idle cycle times
idle_proc_exe = cyl_time - exe_packing - blocked_proc_exe;
idle_proc_ctrl = cyl_time - ctrl_packing - blocked_proc_ctrl;
total_idle_proc_exe += idle_proc_exe;
total_idle_proc_ctrl += idle_proc_ctrl;

generate_processor_stats(j+1, cyl_time, exe_packing, ctrl_packing, idle_proc_exe,
idle_proc_ctrl, blocked_proc_exe, blocked_proc_ctrl);

slice_output_file.close();
)
// Find the largest end time for all processors for "flat" cylinder
for(int m = 0; m < number_of_processors; m++)
{ int index = 0;
Head_ptr = &mew_order{index]{m];
while (Head_ptr->node_id = NULL)
{index-H-;
if(Largest_cyl_time < Head_ptr->end_time)
Largest_cyl_time = Head_ptr->end_time;
cylTime_output_file << endl << endl << Largest_cyl_time << endl;
}Head_ptr = &new_order{index][m];

// Find idle time for "flat" cylinder
idle_ctrl_cycles = (Largest_cyl_time*number_of_processors) - blocked_ctrl_cycles;

49

idle_exe_cycles = (Largest_cyl_time*number_of_processors) -
blocked_exe_cycles;

.cyhnder_ﬁle(l..argest cyl_time);
est_cyl_time,idle_ctrl_cycles, blocked_ctrl_cycles,

generate_
idle_exe_cycles, blocked_exe_cycles, total_idle_proc_exe, total_idle_proc_ctrl,
total_slice_times);

cylTime_output_file.close();

Ill{l:lnction to create the cylinder output file
voi
l{lode_alloc::make_cylinder_ﬁle(long Largest_cyl_time)

node_type *Head_ptr;

ofstream cylinder_output_file;
cylinder_output_file.o é:n "cylinder.out");
i{f (!cylinder_output_

cerr << "\nCannot Open file cylinder.out\n”;
}exit(O);

tior (intj = 0; j < number_of_processors; j++) //Print out node order

Head_ptr = &mnew_order{0](j];
int processorNodes = Head_ptr->nodes_per_processor;
cylinder_output_file << newln << processorNodes << endl << endl;

ii'or(inti=0;i<processorNodes; i++)

Head_ptr = &new_orderfil(jl;
cylmder output_file << setw(7) << Head_ptr->node_id;
cy —output_file << setw(12) << Head_ptr->start_time;
linder_output_file << setw(12) << Head_ptr->end_time;
} cyhnder_output_ﬁle <<endl;
}

cylinder_output_file << newln << newln << Largest_cyl_time << endl;
) cylinder_output_file.close();

/ ancuon to print individual processor statistics
voi

node_alloc::generate_processor_stats(int procNum, long cyl_time, long exe_packing, long
ctrl_packing, long idle_proc_exe, long idle_proc_ctrl, long blocked_proc_exe, long
t{’lockcd_pmc_ctrl)

ofstream processor_stats_file;

processor_stats_ﬁle.o "proc_stats.out”, ios::app);
if (!processor_stats_fﬂ:l;

{
cerr << "\nCannot Open file proc_stats.out\n";
l1=xit(0);

processor_stats_file << "PROCESSOR UTILIZATION\n\n";
processor_stats_file << "NUMBER OF PROCESSORS : *;
processor_stats_file << setw(4) << number_of_processors << endl << endl;
processor_stats_file << "CYCLESPERWORD :*";

processor_stats_file << setw(4) << comm << endl << endl;

double ctrl_util_rate = (double)ctrl_packing/cyl_time*100.0;
double ctrl_idle_rate = (double)idle_proc_ctri/cyl_time*100.0;
double ctrl_blocked_rate = (double)blocked_proc_ctri/cy!_time*100.0;

double exe_util_rate = (double)exe_packing/cyl_time*100.0;
double exe_idle_rate = (double)idle_proc_exe/cyl_time*100.0;
double exe_blocked_rate = (double)blocked_proc_exe/cyl_time*100.0;

processor_stats_file << "PROCESSOR NUMBER :";
processor_stats_file << setw(4) << procNum << endl;

processor_stats_file << "\nCONTROL UNIT UTILIZATION\n\n";

processor_stats_file.setf(ios::fixed);
pmcessor_smts_ﬁle.setf(ios::shm:));

processor_stats_file << "BEST ER PACKING (CONTROL TIME) :";
processor_stats_file << setw(12) << ctrl ing << endl << endl;
processor_stats_file << "END TIME OF ACIT 0"
processor_stats_file << setw(12) << cyl_time << endl << endl;
processor_stats_file << "Control Unit Utilization Rate : *;
processor_stats_file << setw(6) << setprecision(1);
processor_stats_file << ctrl_util_rate << "%\n";

processor_stats_file << "Control Unit Idle Rate A
processor_stats_file << setw(6) << setprecision(1);
processor_stats_file << ctrl_idle_rate << "%\n";

processor_stats_file << "Control Unit Blockage Rate : "
processor_stats_file << setw(6) << setprecision(1);
processor_stats_file << ctrl_blocked_rate << "%\n\n\n\n\n";

processor_stats_file << "EXECUTION UNIT UTILIZATION\n\n";
processor_stats_file << "BEST CYLINDER PACKING (EXECUTION TIME) : *;

processor_stats_file << setw(12) << exe_packing << endl << endl;
processor_stats_file << "END TIME OF ACTIVITIES HH

51

processor_stats_file << setw(12) << cyl_time << endl << endl;
processor_stats_file << "Execution Unit Utilization Rate :°;
processor_stats_file << setw(6) << setprecision(1);
processor_stats_file << exe_util_rate << "%\n";
processor_stats_file << "Execution Unit Idle Rate i
processor_stats_file << setw(6) << setprecision(1);
processor_stats_file << exe_idle_rate << "%\n";
processor_stats_file << "Execution Unit Blockage Rate : ";
processor_stats_file << setw(6) << setprecision(1);
processor_stats_file << exe_blocked_rate << "%\n\n\n";
processor_stats_file << endl;

/) F:lmction to print cylinder statistics

voi

node_alloc::generate_statistics(long Largest_cyl_time, long idle_ctrl_cycles, long
blocked_ctrl_cycles, long idle_exe_cycles, long blocked_exe_cycles, long
liotal_xdlc_proc_ , long total_idle_proc_ctri, long total_slice_times)

long exe_cyl_packing =
long ctrl_cyl_packing =

node_type *Head_ptr;

ofstream statistics_output_file;
statistics_output_file.open("cyl_stats.out");
if (!statistics_output_file)

{
cerr << "\nCannot Open file cyl_stats.out\n";
}exlt(O).

statistics_output_file << "PROCESSOR U'mJZA‘I'ION\n\n"
statistics_ omput_léllc:= << NUL:;!ER OF l;eRrOO(}ESSORS end] o
statistics_output_file << setw(4) << num| ptocessots << <<en
statistics_output_file << "CYCLES PER WORD
statistics_output_file << setw(4) << comm << endl << endl,

t{'or(int j = 0; j < number_of_processors; j4++)

Head_ptr = &new order[0][l].
int processorNodes = Head_ptr->nodes_per_processor;

1;or(inti=0;i<ptocessorNodes;i++) ;lCalctﬂateexeandcu'lunitpackingper
Head_ptr = &new_orderfi)(j};

exe_cyl_packing += Head_ptr->exe_time;
ctrl_cyl_packing += Head_ptr->setup_time + Head_ptr->breakdown_time;

//Calculate values for “jagged” cylinder

52

long avg_slice_time = total_slice_times/number_of_processors;

long best_exe_packing = exe_cyl_packing/number_of_processors;

long best_ctrl_packing = ctrl_cyl_packing/number_of_processors;

long avg_ctrl_idle = (idle_ctrl_cycles/number_of_processors) - best_ctrl_packing;
long avg_ctrl_blocked = blocked_ctrl_cycles/number_of_processors;

long avg_exe_idle = (idle_exe_cycles/number_of_processors) - best_exe_packing;
long avg_exe_blocked = blocked_exe_cycles/number_of_processors;

long avg_ctrl_idle_jag = (total_idle_proc_ctri/number_of_processors) -

if(avg_ctrl_idle_jag < 0)
avg_ctrl_idle_jag = 0;
long avg_exe_idle_jag = (total _idle_proc_exe/number_of_processors) -
best_exe_packing;
if(avg_exe_idle_jag <0)
avg_exe_idle_jag =0;

//Calculate "flat" and "jagged" cylinder statistics
double exe_util_rate = (double)best_exe_packing/Largest_cyl_time*100.0;
double ctrl_util_rate = (doublc)best_m_packingﬂargest_cyl_time‘ 100.0;
double ctrl_idle_rate = (double)avg_ctrl_idle/Largest_cyl_time*100.0;
double ctrl_blocked_rate = (double)avg_ctrl_blocked/Largest_cyl_time*100.0;
double exe_idle_rate = (double)avg_exe_idle/Largest_cyl_time*100.0;
double exe_blocked_rate = (double)avg_exe_blocked/Largest_cyl_time*100.0;
double ctrl_idle_rate_jag = (double)avg_ctrl_idle_jag/avg_slice._time*100.0;
double ctrl_util_rate_jag = (double)best_ctrl_packing/avg_slice_time*100.0;
double ctrl_blocked_rate_jag = (double)avg_ctrl_blocked/avg_slice_time*100.0;
double exe_util_rate_jag = (double)best_exe_packing/avg slice_time*100.0;
double exe_idle_rate_jag = (double)avg_exe_idle_jag/avg_slice_time*100.0;
double exe_blocked_rate_jag = (double)avg_exe_blocked/avg_slice_time*100.0;

statistics_output_file << "\n\n\nCONTROL UNIT UTILIZATION\n\n";

statistics_output_file.setf(ios::fixed);

statistics_output_file.setf(ios::showpoint);

statistics_output_file << "BEST CYLINDER PACKING (CONTROL TIME) :";
statistics_output_file << setw(12) << best_ctrl_packing << endl << endl;
statistics_output_file << "END TIME OF ACTIVITIES (FLAT CYLINDER) : *;
statistics_output_file << setw(12) << est_cyl_time << endl << endl;
statistics_output_file << "Control Unit Utilization Rate :";
statistics_output_file << setw(6) << setprecision(1);

statistics_output_file << ctrl_util_rate << "%\n";

statistics_output_file << "Control Unit Idle Rate HAN

statistics_output_file << setw(6) << setprecision(1);

statistics_output_file << ctrl_idle_rate << "%\n";

statistics_output_file << "Control Unit Blockage Rate HH
statistics_output_file << setw(6) << setprecision(1);

statistics_output_file << ctrl_blocked_rate << "%\n\n\n";

statistics_output_file << "END TIME OF ACTIVITIES (JAGGED' CYLINDERY): ";
statistics_output_file << setw(12) << avg_slice_time << endl << endl;
statistics_output_file << "Control Unit Utilization Rate : ";
statistics_output_file << setw(6) << setprecision(1);

statistics_output_file << ctrl_util_rate_jag << "%\n";

statistics_output_file << "Control Unit Idic Rate "

3

statistics_output_file << setw(6) << setprecision(1);
statistics_output_file << ctrl_idle_rate_jag << "‘b\n"
statistics_output_file << "Control Unit B Ru: H

statistics_output_file << setw(6) << setpmson(

statistics_output_file << ctri_blocked_rate_jag << "%\n\n\n\n\n\n"

statistics_output_file << "EXECUTION UNIT UTILIZATION\n\n";

statistics_output_file << “BEST CYLINDER PACKING (EXECUTION TIME) : *;
statistics_output_file << setw(12) << best_exe ing << endl << endl;
statistics_output_file << “END TIME OF (FLAT CYLINDER) : *;
statistics_output_file << setw(12) << Largest_cyl_time << endl <<endl;
statistics_output_file << "Execution Unit Utilization Rate
statistics_output_file << setw(6) << setprecision(1);
statistics_output_file << exe_util_rate << "%\n";
statistics_output_file << "Execution Unit Idle Rate i
statistics_output_file << setw(6) << setprecision(1);
statistics_output_file << exe_idle_rate << "%\n";
_wtpm_ﬁle << "Execution Unit Blockage Rate : ";
statistics_output_file << setw(6) << setprecision(1);
<< exe_blocked_rate << '%\n\nh"
statistics_output_file << "END TIME OF ACTIVITIES ('JAGGED'CYLINDER) "
statistics_output_file << setw(12) << avg_slice_time << eadl << endl;
outpmwﬁle << w&m@ Unit Utilmnonl) Rate :";
<< <L mm y
statistics_output_file << exe_util_rate_jag << "%\n";
statistics_output_file << "Execution Unit Idle Rate M
statistics_output_file << setw(6) << setprecision(1);
statistics_output_file << exe_idle_rate_jag << "%\n";
statistics ontput_ﬁlc«"ExecuuonUnnBlochgeRmc H
statistics_output_file << setw(6) << setprecision(1);
statistics_output_file << exe_blocked_rate_jag << "%\n\n"
statistics_output_{ - << flush;

N

// Function to reorder the ORDER.IN file sequentially
Il'!:hfuncﬁmwasimphhxbbhdg«hhnmwdaﬂnommmm
voil
?ode_alloc::sequence_nodeso

int i, SWAPPED;

order_in_type TEMP_NODE;

ifstream order_input_file;
order_input_file.open("ORDER.IN™);

ifstream node_i

node_input_file. Open('NODESIN').
node_input_file >> number_of_nodes;

node_input_file.close();

ofstream order_output_file;
order_output_file.open("TEMP_ORDER.IN");

for (int count = 0; count < number_of_nodes; count++)

{ order_input_file >> ORDER[count).node_id;
} order_input_file >> ORDER|count).start_time;

// Order Nodes in order of increasing start time

SWAPPED = 1;
while (SWAPPED)

SWAPPED =0;
for (i = 0; i <number_of_nodes; i++)

{ i{f(ORDER(i).start_time > ORDER[i+1].start_time) // Reorder nodes

TEMP_NODE = ORDER(i};
ORDER[i] = ORDER[i+1};
ORDER[i+1] = TEMP_NODE;
} SWAPPED = |;
}

//Put reordered nodes into output file
for (i =0; i <= number_of_nodes; i++)

{ 1{f (ORDER]i).node_id != NULL)
} order_output_file << ORDER(i).node_id << setw(8) << "0" <<newin;
}
aﬂeunput_ﬁle-closeo
order_output_file.close();
system("mv ORDER.IN ORDER_IN.ORG");
syseem("mv TEMP_ORDER.IN ORDER.IN");

system("mv NODES.IN NODES_SNB.IN");
system("mv NODES_IN.ORG NODES.IN");

}
// end of program

55

APPENDIX B: PROGRAM USER'S MANUAL

1. NODE SCHEDULING PROGRAM

This section describes a Large Grain Data Flow node-to-processor scheduling program
(referred to as SCHEDULE) which provides a detailed node-to-processor scheduling of a
data flow graph using the model described in [Ref. 4). The program uses a two
dimensional array to represeat the revolving cylinder to generate the order the nodes should
enter the system based on input data files and data provided by the user. The program also
determines if the breakdown time of the last node on a processor can be ‘wrapped-around’
to provide an accurate modeling of the revolving cylinder. This mapping is only concerned
with the arithmetic processors and the program nodes. Therefore, input and output nodes
and the input/output processors described in [Ref. 4] are not included in this scheduling
program or associated data files. This program must be run prior to executing the mapping
program discussed in Section II. This program begins execution with the command
'schedule’.

A. USER INTERFACE
The following inputs and options are available to the user:
1. SCHEDULER LATENCY TIME
A number which abstractly represents the time it takes the scheduler to change the
state of its local memory when amounts on a queue are modified due to node input or
output.

2. COMMUNICATION TIME FOR ONE WORD
This is the time to transmit one word of data between a memory module and a

processor.

B. INPUT FILES
1. Input File: NODES.IN
This file contains the initial node information required for mapping. The number
of nodes parameter is an individual element. The remaining parameters exist for each node
in the graph.
a. Number of Nodes
This is the total number of nodes in the data flow graph.
b. Node ID
This is the node identifier number.
c. Imstruction Size
This is the node instruction size parameter in words.
d. Setup Time
This is the node setup time in cycles.
e. Execution Time
This is the node execution time parameter in cycles.
J. Breakdown Time
This is the node breakdown time parameter in cycles.
8. Processor Type
This is the processor number that the node will be assigned to.
2. Input File: QUEUES.IN
This file contains the initial queue information required for scheduling. The
number of queues parameter is an individual element. The remaining parameters exist for
each queue in the graph.

a. Number of Queues
This is the total number of queues in the data flow graph.
b. Queue ID
This is the queue identifier number.
¢. Source Node
This is the node ID for the node at the tail of the queue.
d. Sink Node
This is the node ID for the node at the head of the queue.
e. Write Amount
This is the queue write amount parameter in words.
f. Read Amount
This is the queue read amount parameter in words.
2. Input File: PROCS.IN
This file is fully described in Section II. The only data taken from this file is the
number of processors parameter.

C. OUTPUT FILES
Many output files are created for input to the mapping program.
1. Output File: ORDER.IN
This file is the mapping order of the nodes. The mapping occurs in the order the
nodes are listed.
a. Node ID
This is the node identifier of the next node to enter the system.
b. Time into System
This is the time when the node will be available to be mapped. Normally,
all nodes will have a time of '0' which means all nodes are available to be mapped
simultaneously from the start time.

2. Output File: NODES_SNB.OUT
This file is similar in format to the NODES.IN file but also contains the calculated
values of setup and breakdown for the nodes in the system based on the user input. This
file is not used by the mapper program,; it is for user information only.
3. Output File: cylinder.out
This file is a representation of the mapping of the cylinder. It is in the same
format as the file ‘cylinder.dat' which is described fully as an input to the synchronization
arc generator (SAG) program, however, this file takes into account the possibility of
‘'wrap-around' of the breakdown of the last node on a processor. The name of this file
must be changed to 'cylinder.dat’ before using it for input to the SAG program.
4. Output File: cyl_stats.out
In this file are several percentages to express the efficiency of the mapping. Two
sets of statistics are given. In the first, the largest completion time over all processors is
computed and all processors are assumed to run to this time ("flat cylinder”). The statistics
are then computed over the total processor-time required by the mapping. This is the
largest completion time over all processors multiplied by the number of processors. In the
second set ("jagged cylinder”), each processor completion time is calculated individually
and the statistics computed for each processor, the average is then taken of the individual
processor statistics .
a. Control Unit and Execution Unit Utilization Rate
This refers to the total percentage of processor-time that the specified unit
(control or execution) is performing useful work, either input or output for the control unit
or execution for the execution unit.
b. Control Unit and Execution Unit Blockage Rate
This refers to the total percentage of processor-time that the specified unit
(control or execution) is blocked, i.e., the unit has completed the specific task, but the node

cannot switch to the other unit as the other unit is currently busy.

59

c¢. Control Unit and Execution Unit Idle Rate
This refers to the total percentage of processor-time that the specified unit
(control or execution) has no node assigned.
5. Output File: proc_stats.out
The processor statistics are outlined in this file. The statistic listings are
essentially the same as for ‘cyl_stats.out', except that the statistics are computed over one
processor vice an average over all processors. Each processor is also treated as a ‘jagged’
slice, that is, no attempt is made to find the greatest completion time of all processor slices;
the statistics are calculated based on the final completion time for each individual processor.

IL LGDF MAPPING PROGRAM

This section describes a Large Grain Data Flow mapping program (referred to as MAP)
which provides a detailed multiprocessor mapping of a data flow graph using the model
described in [Ref. 4]. The program is time driven. As events are scheduled to occur, the
event with the lowest time stamp will set the next time flag. When this flagged time occurs,
all nodes are checked for the next event to occur. A set of lists track which nodes are in the
various states of processing. This mapping is only concerned with the arithmetic
processors and the program nodes. Therefore, input and output nodes and the input/output
processors described in [Ref. 4] are not included in this mapping program or associated
data files. This program must be run prior to executing the synchronization arc generator
program or the simulator program discussed in Sections III and IV, respectively. This
program begins execution with the command ‘map'.

A. USER INTERFACE
The following inputs and options are available to the user:
1. SCHEDULER LATENCY TIME
COMMUNICATION TIME FOR ONE WORD
These inputs were fully discussed in Section L
2. INTERACTIVE INTERFACE
The user can select whether or not to use the interactive interface. The interface
will allow the user to see the current state of the system at any time. Also, the user can
adjust the operation of the system by manipulating nodes which are waiting to begin
processing.

61

B. INPUT FILES
1. Input File: NODES.IN
Input File: QUEUES.IN
These files were also previously described in Section L.
2. Input File: CHAINS.IN
This file contains the initial chain information required for mapping. The number
of chains parameter is an individual element. The remaining parameters exist for each chain
in the graph. Note that this file is required to exist, or execution will fail. If there are no
chains, then simply have '0' as the only entry in the file.
a. Number of Chains
This is the total number of chains in the system.
b. Chain ID
This is the chain identifier number.
¢. Chained Nodes
The node IDs for the nodes included in the chain are listed in the order of
chaining. A '0' is used to identify the end of the node list for the chain.
3. Input File: PROCS.IN
The following information describes the hardware configuration.
a. Number of Arithmetic Processors
This is the total number of arithmetic processors in the system.
b. Processor Type
The processor type is listed for the number of processors in the system. For
example, if there are three processors, the numbers 1, 2, and 3 will be listed in a single
column.
4. Input File: ORDER.IN
This file is the mapping order of the nodes. The mapping occurs in the order the
nodes are listed. This file can be created manually by the user or can be generated using the

62

scheduler program. This file is fully described as an output to the scheduler program in
Section L.

C. OUTPUT FILES
Many output files are created for complete information on the mapping.
1. Output Files: CON_EXE.OUT,CON_UNIT.OUT,EXE_UNIT.OUT

These three files provide an exact mapping of the nodes on the processors. The
events occurring at a specific time and the nodes involved are depicted. A key to the
markings is listed in each file. File ‘CON_EXE.OUT provides a complete mapping file,
file 'EXE_UNIT.OUT' is a mapping of the execution units only and the file
‘CON_UNIT.OUT" is a mapping of the control units only. These output file listings do
not take into account ‘wrap-around' of the last node's breakdown time.

In each file are several percentages to express the efficiency of the mapping. An
important note about the statistics is that they are computed over the total processor-time
required by the mapping. This is the time to complete the mapping multiplied by the
number of processors. The percentages are therefore essentially an average of the
individual processor rates.

a. Processor Utilization Rate

This refers to the total percentage of processor-time that a processor is
performing some activity in either the control unit or the execution unit.

b. Processor Idle Rate

This refers to the total percentage of processor-time that a processor is not
performing any activity.

c. Control Unit and Execution Unit Utilization Rate

This refers to the total percentage of processor-time that the specified unit
(control or execution) is performing useful work, either input or output for the control unit

or execution for the execution unit.

63

d. Control Unit and Execution Unit Blockage Rate
This refers to the total percentage of processor-time that the specified unit
(control or execution) is blocked, i.e., the unit has completed the specific task, but the node
cannot switch to the other unit as the other unit is currently busy.
e. Control Unit and Execution Unit Idle Rate
This refers to the total percentage of processor-time that the specified unit
(control or execution) has no node assigned.
2. Output File: SUMMARY.OUT
This file summarizes the number of processors in particular states at any given
time. The event times in the three previous mapping files will match with this file. The
processor utilization percentages are displayed.
3. Output Files: NODES.OUT, PROCS.OUT, CHAINS.OUT
These three files provide extremely detailed data on specific nodes, processors,
and chains. The lines are well described within the output listings. Most of the items can
be cross-referenced to other files.
4. Output File: cylinder.dat
This file is a representation of the mapping of the cylinder. It is described fully
as an input to the synchronization arc generator (SAG) program. The inclusion of this file
is to provide the data necessary to run SAG based on the mapping generated by this

program without any adjustments.

D. SELECTION OF THE USER INTERFACE OPTION

The selection of the user interface option will allow the user to observe and
interactively change the mapping as it progresses. However, once the mapping has
progressed past an event, it is not possible to go back and make a change. The interactive
interface is very descriptive. The user can view many aspects of the system and make
many changes during any pause. Selecting the ‘CONTINUE WITH NEXT EVENT will

allow the mapping to continue. To discontinue the use of the interactive interface, select the
'‘CHANGE INTERRUPT STRATEGY" followed by 'CONTINUE TO CONCLUSION'
followed by 'CONTINUE WITH EVENT" options. This will allow the mapping to

complete.

III. LGDF SYNCHRONIZATION ARC GENERATOR

This section describes a Large Grain Data Flow model synchronization arc generator
program (referred to as SAG). This program acts as a preprocessor to the simulator
program (SIM). Its purpose is to modify the input files to SIM to be able to analyze the
revolving cylinder (RC) method as described in [Ref. 4]. SAG makes extensive use of
linked lists. SAG is started with the command ‘generate’.

A. USER INTERFACE
The user has a choice of one of two arc generation techniques in SAG. Both
techniques are described fully in [Ref. 4).
1. Start After Finish (SAF)
This selection will determine the synchronization arcs based on the start after
finish technique.
2. Start After Start (SAS)
This selection will determine the synchronization arcs based on the start after start

technique.

B. INPUT FILES
1. Input File: nodes.dat

This file is a tabular listing which completely describes the nodes of a data flow
graph. The number of nodes parameter is an individual element. The remaining
parameters exist for each node in the graph.

a. Number of Nodes

This is the total number of nodes in the data flow graph. This initializes the

counters necessary to read in the node data.

b. Node ID
This is the node identifier number, which must be unigue for each node in

the system. Do not use ‘0’ as a node ID.

c¢. Node Type
This identifies the type of node. This type defines how the node will be
handled in the programs.

(1) node type =0: normal node
(2) node type = 1: input node
(3) node type =2: output node
d. Instruction Size
This is the node instruction size parameter in words.
e. Execution Time
This is the node execution time parameter in cycles.
S. Setup Time
This is the node setup time parameter in cycles.
8. Breakdown Time
This is the node breakdown time parameter in cycles.
k. Required Processor Type
This is the type of processor required by the node. A listing of '100'
identifies an input/output processor.
i. Alternate Processor Type
This is the alternate processor type to be used if the required processor type
is unavailable. In most cases, the alternate is the same as the required processor type.
J. Memory Module Assignment
This is the memory module assignment for the node if the user defined

memory assignment option is chosen.

67

k. Node Priority
This is the assignment priority associated with the node if the user defined
priority option is chosen. A lower number represents a higher priority.
2. Input File: queues.dat
This file is a tabular listing which completely describes the queues of a data flow
graph. The number of queues parameter is an individual element. The remaining
parameters exist for each queue in the graph.
a. Number of Queues
This is the total number of queues in the system. This initializes the
counters necessary to read in the queue data.
b. Queue ID
This is the queue identifier number, which must be unique for each queue in
the system. Do not use ‘0’ as a queue ID.
c. Queue Type
This identifies the type of queue. The type defines how the queue will be
handled in the programs.
(1) queue type =0: data queue
(2) queue type = 1: input queue
(3) queue type =2: output queue
(4) queue type = 3: synchronization arc
d. Source Node
This is the node ID for the node at the tail of the queue.
e. Sink Node
This is the node ID for the node at the head of the queue.
J. Write Amount

This is the queue write amount parameter in words.

Read Amount

This is the queue read amount parameter in words.
Produce Amount

This is the queue produce amount parameter in words.
Consume Amount

This is the queve consume amount parameter in words.
Threshold Amount

This is the queue threshold amount parameter in words.
Initial Length

This is the queue initial length parameter in words.
Capacity

This is the queue capacity parameter in words.

. Memory Module Assignment

This is the memory module assignment for the queue if the user defined

memory assignment option is chosen.
3. Input File: machine.cfg
This file defines the system hardware configuration.

Number of Memory Moduiles

This is the number of memory modules to be modeled in the simulator.
Number of Input / Output Processors

This is the number of input / output (I/O) processors to be modeled in the

simulator. Normally there is only one /O processor.

c.

Number of Arithmetic Processors

This is the number of arithmetic processors in the system.

Processor Types

This is a list of the types of processors defined, with the number of elements

in the list equal to the number of processors, excluding I/O processors which are

69

automatically uefined as '100". If synchronization arcs without nodes bound to processors
are desired, the user should enter a ‘0’ for each element. If however, the user desires
synchronization arcs generated with nodes bound to processors, each element should
correspond to a processor type. For example, if there are three processors, the numbers 1,
2, and 3 should be listed in a column.
4. Input File: cylinder.dat
This file is a representation of the mapping of nodes on the processors. If an
analysis of a cylinder with no wrap-around is desired, this file will be generated by the
external mapping program (MAP). If an analysis of a cylinder with wrap-around is
desired, this file is generated by the scheduler program, after the filename is modified from
‘cylinder.out'.
a. Number of Nodes on a Processor
For each arithmetic processor in the system, the number of nodes which
used that processor are given. Following the node total, the following data is provided for
cach node on the given processor:
(1) NodeID
(2) The node start time on the processor
(3) The node finish time on the processor
b. Cylinder Size
Following the listing of the nodes, the time to complete the cylinder slice is
given. This is equal to the longest processor busy time of all the processors in the system.

C. OUTPUT FILES
Many output files are created for complete information on the mapping.
1. Output File: queues.dat
This file has the same format as described previously for ‘queues.dat’.

However, synchronization arcs have been appended to the end of the file as determined by

this program. This adjusted ‘queues.dat’ file may now be used by the simulator to analyze
the revolving cylinder (RC) scheduling techniques.
2. Output File: oqueues.dat
This file is a copy of the original ‘queues.dat’. Since this program modifies the
file ‘queues.dat’, this file will allow for easy recovery back to the original graph
description, prior to the addition of synchronization arcs.
3. Output File: indexcyl.out
This file provides the same information as the ‘cylinder.dat’ file. In addition, the
appropriate index for the node is provided as described in [Ref. 4].
4. Output File: tokens.out
source node, sink node, initial length (number of tokens), threshold amount, consume
amount, and produce amount.
S. Temporary File: rquenes.tmp
This file is a temporary file created during execution which will provide no useful
information to the user.

71

IV. LGDF SIMULATOR

This section describes a simulator (referred to as SIM) for a Large Grain Data Flow
model described in [Ref. 4]. SIM is an eveat-driven program that makes extensive use of
linked lists. SIM is started with the command ‘simulate’.

A. USER INTERFACE

There are many inputs and options available to the user. They are presented below
exactly as they appear in the program.

1. COMMENT LINE

This is a comment which will be displayed at the head of the data set in the
statistics file to enable the user to easily distinguish the file output. Results from successive
executions of SIM can be dumped to a single file without losing track of the data sets.

2. THE INSTANCE NUMBER TO START GATHERING RESULTS

This is the input instance of the graph to start gathering throughput and utilization
results from the simulation.

3. THE INSTANCE NUMBER TO TERMINATE THE SIMULATION

This is the output instance, which whea completed, will terminate the simulation.

4. SCHEDULER LATENCY TIME (cycles)

This is scheduler latency for any queue variations in the scheduler internal
memory. This could be the time taken by the scheduler to manipulate its internal data
structures.

§. COMMUNICATION TIME FOR ONE WORD (cycles)
This is the time to transmit one word of data between a memory unit and a

processor across the data transfer network.

6. DATA RATE OPTION
Two options are available:
a. User Defined
The user will be prompted for further input of the time interval which will
pass after the input data for one graph iteration are entered into the system until the input
data for the next graph iteration are entered into the system. The prompt seen by the user
is: ENTER THE DATA PERIOD BEFORE THE NEXT GRAPH ITERATION (cycles).
b. Maximum Throughput
The simulator will generate data for consecutive graph iterations to insure
that the input queue is constantly filled. This will drive the machine at its maximum
throughput. This effectively permits the user to determine the upper bound in the input data
rate for the given configuration.
7. MEMORY MAPPING OPTIONS
Two options are available:
a. User Defined Mapping
This option will map nodes and queues to memory modules as defined in
the nodes.dat file.
b. Arbitrary Mapping
The simulator will arbitrarily assign nodes and queues to memory modules.
8. NODES ON READY LIST OPTION
Two options are available:
a. Only One Node Instance can be on Ready List
Only one instance of a node can be maintained on the ready list at any given

b. Multiple Node Instamces can be onm Ready List
Multiple instances of a node can be maintained on the ready list at any given

time. However, only one instance of the node can be processing.

73

9. NODES EXECUTION PRIORITY OPTIONS
Several options are available to place nodes in the ready list.:
a. No Priority
Nodes are executed on a First-Come-First-Served (FCFS) basis, i.c.,
according to the order in which they are ready.
b. User Defined
The node priorities are as defined in the file ‘nodes.dat' This allows the
user to designate critical nodes to be assigned to a processor immediately when data is
available.
c. Shortest Execution Time First
A ready node with a shorter execution time will be assigned before a ready
node with a longer execution time.
d. Longest Execution Time First
A ready node with a longer execution time will be assigned before a ready

node with a shorter execution time.

B. INPUT FILES
Three input files are required by the simulator.
1. Input File: nodes.dat
The contents of this input file are described fully as an input to the
synchronization arc generator program in Section 4.
2. Input File: queues.dat
The contents of this input file are described fully as an input to the
synchronization arc genemmr program in Section 4.
3. Input File: machine.cfg
The contents of this input file are described fully as an input to the
synchronization arc generator program in Section 4.

74

C. OUTPUT FILES
Three output files are generated by this program.
1. Output Files: starts.out
This is a listing of the graph instance and the start times of those instances being
measured.
2. Output File: endtimes.out
This is a listing of the graph instance and end times of those instances being
measured.
3. Output Files: stats.out
This file summarizes the data from a given simulation. The same information is
displayed to the standard output upon program completion. Note that this file is an
appended file, so additional simulation results are added to the ead of the file which enables
easier comparison of multiple tests. The following data is provided:
a. COMMENT
The comment line input by the user.
b. DATA RATE OPTION
The number corresponding to the choice made at the start of ti=):rogram.
¢. MEMORY MAPPING OPTION
The number corresponding to the choice made at the start of the program.
d. NODES ON READY LIST OPTION
The number corresponding to the choice made at the start of the program.
e. NODES EXECUTION PRIORITY OPTION
The number corresponding to the choice made at the start of the program.
S. START INSTANCE
The data flow graph instance where measurements were started.
8. END INSTANCE
The data flow graph instance which terminated the simulation.

75

h. SCHEDULER LATENCY TIME (cycles)

The scheduler latency for any queue adjustment in the scheduler internal
memory.

i. COMMUNICATION TIME FOR ONE WORD (cycles)

The communication time to transfer one word of data between a memory
module and a processor.

Jj. ITERATION DATA PERIOD (cycles)

The time differential for the input of consecutive data flow graph iterations,
or the statement 'MAX THROUGHPUT if the maximum throughput input option was
chosen.

k. PROCESSOR DATA
For each processor in the system, the following data is provided:
(1) ID - the processor identifier
(2) TYPE - the processor type (100 refers to 1/O processors)
(3) UTILIZATION - the overall processor utilization rate
(4) EXECUTION - the utilization rate of the execution unit
(5) EXE/UTIL - the amount of execution as part of the overall
utilization |
(6) UTIL-EXE - the amount of communication not overiapped with
execution
I. AVERAGE PROCESSOR UTILIZATION

The average amount over all arithmetic processors (excluding 1/O) of

processor utilization during the period measurements are taken.
m. AVERAGE PROCESSOR EXECUTION
The average amount over all arithmetic processors (excluding /O) of

execution unit utilization during the period measurements are taken.

76

n. AVERAGE EXECUTION / UTILIZATION RATE
The average amount over all arittmetic processors (excluding I/O) of
execution unit utilization as a portion of total utilization during the period measurements are
taken.
o. AVERAGE NON-OVERLAPPED COMMUNICATION RATE
The average amount over all arithmetic processors (excluding I/O) of
communication not overlapped with execution during the period measurements are taken.
p. NORMALIZED DATA RATE
The rate of inpu: into the system compared to the optimum execution
completion time. A value of '0' means the optimum throughput option was chosen.
g. SIMULATION TIME (cycles)
The total time in cycles for the simulation to run to completion.
r. AVERAGE RESPONSE TIME (cycles)
The average length of time over all measured graph instances for a graph
instance to complete.
s. AVERAGE TEROUGEPUT (Instances per Megacycle)
The average number of data flow graphs to be completed per million cycles
during the time measurements are taken..
t. INSTANCE LENGTH STANDARD DEVIATION
The standard deviation of the completion time of the measured instances.
u. COEFFICIENT OF VARIATION
The instance length standard deviation divided by the average response time.
v. I/0 COMMUNICATION TIME FOR ONE GRAPH INSTANCE
The required communication time (in cycles) for one data flow graph

instance which occurs on the I/O processors..

w. 1/0 CALCULATION TIME FOR ONE GRAPH INSTANCE
The required calculation time (in cycles) for one data flow graph instance
which occurs on the J/O processors..
x. NODE COMMUNICATION TIME FOR ONE GRAPH
INSTANCE
The amount of communication time (in cycles) which is related to the graph
nodes (setup latency, breakdown latency, and the time to load the instruction), excluding
that which occurs on the I/O processors.
y. QUEUE COMMUNICATION TIME FOR ONE GRAPH
INSTANCE
The amount of communication time (in cycles) which is related to the graph
queues (reading and writing data), excluding that which occurs on the I/O processors.
z. COMMUNICATION TIME FOR ONE GRAPH INSTANCE
The required communication time (in cycles) of one data flow graph
instance. This does not include the communication time and control time for input and
output nodes and queues.
aa. CALCULATION TIME FOR ONE GRAPH INSTANCE
The required calculation time (in cycles) of one data flow graph instance.
This does not include the calculation time for input and output nodes.
ab. IDEAL CYLINDER COMMUNICATION OF ONE INSTANCE
The amount of communication time (in cycles) which would be equally
divided among the arithmetic processors. This does not include the communication which
occurs on the I/O processors.
ac. IDEAL CYLINDER CALCULATION OF ONE INSTANCE
The amount of calculation time (in cycles) which would be equally divided
among the arithmetic processors. This does not include the calculation which occurs on the

I/O processors.

78

ad. COMMUNICATION/CALCULATION RATIO
The ratio of the communication time to the computation time for one
instance. This does not include the communication and calculation which occurs on the /O

Processors.

79

APPENDIX C: SAMPLE INPUT DATA FILES

NODES.IN

20

101 0 0 50000 0 6
102 0 0 50000 0 3
103 0 0 150000 0 7
104 O 0 150000 0 8
105 O 0 100000 0 4
106 O 0 100000 0 5
107 O 0 1000000 0 1
108 O 0 50000 0 1
19 0 0 400000 0 7
110 0 0 1000000 0 2
111 0 0 400000 0 8
112 0 0 75000 0 2
113 0 0 1000000 0 3
114 0 0 1000000 0 4
115 0 0 1000000 0 5
116 O 0 50000 0 8
117 0 0 800000 0 6
118 0 0 50000 0 6
119 0 0 100000 0 7
120 O 0 100000 0 8

80

QUEUES.IN

25

101
102
103
104
105
106
107
108
109
109
110
111
111
112
113
114
115
116
117
117
118
119
120

RRBREBEEEEaGRGREs YR NcuswN~

101
102
103
104
105
106
107
108
109
110
112
113
111
112
114
115
116
116
117
117
118
120
119

513
513
513
513
513

81

nodes.dat

COOO0OOOOOOCOOCOOOOOODOCSD
O 00 T W)t = £~ VOO N N F)00 \O \O I~ 00O \O
—

ot
COCOOOOOOOOCOOOOOOOO0D

COOOOOOCLOOOOOOOOOoOCOD

FeESEEEASEReaga R

v g g

COOOCOOCOOOCOOCOOOoOOOODOOD
CO0COCO0OOOOOOCOOOOOOOO~N

c88388EBZI NI S®2ag
e e i e R R R R R R B P RS MR RS A RSP XY

queues.dat

e

101

103
104
105
106
107
108
109
109
110
111
111
112
113
114
115
116
117
117
118
119
120

DNOOOCOCOOOCOOCOOOOOOOOOOCOD mm

CREBREEEBE=SaGREREgCR I nsLN~

513
513
513
513

COCOOOOOOOOOOOOoCOOOCOCOCODS

131072
131072
131072
131072
131072
131072
32768
32768
32768
32768
32768
32768
32768
32768
32768
32768
3200
3200
16416
3200
4104
4104
4104
4104
4104

[y
QWrs O\NOO LA~ P

[y

WO LR=DOWNN

APPENDIX D: SAMPLE RUN OF PROGRAMS

This appendix outlines the general procedure for running a simulation session with the
programs in this thesis and [Ref. 4]. Input and output files will be indicated in bold.
Commands required to run programs will be indicated in italics. Consult the user's
manual (Appendix B) for detailed descriptions of the program input and output files. Note
that all output files are opened for writing (except stats.out) during program execution.
This means that file names must be modified when running successive iterations of the
same program or data will be lost.

1. Modify the NODES.IN, QUEUES.IN, PROCS.IN, and CHAINS.IN files
for the graph to be analyzed.

2. Run the node allocation program by typing schedule and entering the proper input
data. This program will generate the ORDER.IN file and the cylinder.out file.

3. Run the mapper program by typing map and entering the proper input data. This
will generate the cylinder.dat file and other descriptive output files.

There are now several different steps to be taken, depending on whether it is desired to
analyze the FCFS or RC technique and dependent on whether wrap-around or no wrap
around is desired. Each of the techniques and variations will be discussed separately.

A. FCFS

Modify the nodes.dat, queues.dat, and machine.cfg files for the graph to be
analyzed. The cylinder.dat file must also be present for the program to run, although it
is not necessary to be concerned about the wrap-around or no wrap-around option since the
simulator does not use this file for FCFS. Run the simulator program by typing simulate
and enter the proper input data.

B. RC TECHNIQUES
For the various RC techniques, synchronization arcs must be generated before the
simulator program is run.
1. Start-after-start (SAS) or start-after-finish (SAF) without binding
nodes to processors.
The machine.cfg file must contain a zero for each processor assigned.
a. No wrap-around
Use the cylinder.dat file from the mapper program.

b. Wrap-around:

The cylinder.out file must be renamed to cylinder.dat. Ensure the
cylinder.dat file is renamed figst, or it will be overwritten.

Run the synchronization arc program by typing generate. Select the technique
desired. If it is desired to generate another set of synchronization arcs for a different
technique (i.c., SAF arcs are generated, and SAS is now desired) the queues.dat file
must be renamed (to something appropriate, ¢.g., queues.SAF) and the oqueues.dat
file renamed to queues.dat. The generate program can now be run for the new technique.

2. Start-after-start (SAS) or start-after-finish (SAF) with binding
nodes to processors.

For this technique, the machine.cfg file must now contain a number for each
processor assigned (i.c., 1, 2, etc.). The same rules apply as above for generation of arcs
for wrap-around and no wrap-around techniques.

C. SIMULATIONS

For the simulations it is important to maintain the proper input files. Ensure the
queues.dat file matches the appropriate cylinder.dat file, i.c., wrap or no wrap and that
the machine.cfg file corresponds to the desired binding or no binding condition. As an
example, say the input files were originally named (after generating the synchronization
arcs) queues.SAFaW (no wrap), queues.SAFbnW (bound, no wrap),

85

queues.SAFnW (with wrap), queues.SAFbW (bound, with wrap), cylinder.W
(with wrap), cylinder.nW (no wrap), machine.cfgb (bound), and machine.cfgnb
(not bound). In order to run a simulation for the no wrap, non-bound configuration, the
files, queues.SAFnW, cylinder.nW, and machine.cfgnb must be renamed to
queues.dat, cylinder.dat, and machine.cfg. The simulator program can now be run
by typing simulate. Remember that the three files named above must be renamed again in
order to simulate new RC techniques.

]

LIST OF REFERENCES

Shukla, S.B., Little, B.S., and Zaky, A., "A Compile-Time Technique for
Controlling Real-Time Execution of Task-Level Data Flow Graphs,” presented at
the 1992 International Conference on Parallel Processing, St. Charles, Illinois.

Cross, D. M., Usefullness of Compile-Time Restructuring of LGDF Programs in
Throughput-Critical Applications, Master's Thesis, Naval Postgraduate School,
Monterey, California, September 1993.

Bell, H.A., A Compile-Time Approach For Chaining and Execution Control in
the AN/UYS-2 Parallel Signal Processing Architecture, Master's Thesis, Naval
Postgraduate School, Monterey, California, June 1992.

Cross, D.M., Shukla, S.B., and Zaky, A., Revolving Cylinder Analysis: A
Technique for Restructuring of Large Grain Data Flow Graphs Representing
Throughput-Critical Applications, Naval Postgraduate School Technical Report
NPS-EC-93-015, September 1993.

Akin, C., Efficient Scheduling of Real Time Compute-Intensive Periodic
Graphs on Large Grain Data Flow Multiprocessor, Master's Thesis, Naval
Postgraduate School, Monterey, California, March 1993.

87

10.

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314-6145

Dudley Knox Library, Code 52
Naval Postgraduate School
Monterey, CA 93943-5101

Chairman, Code EC

Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, CA 93943-5121

Prof. Shridhar B. Shukla, Code EC/Sh
Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, CA 93943-5121

Prof Amr Zaky, Code CS/Za
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5118

Mr. David Kaplan

Naval Research Laboratory
4555 Overlook Avenue, SW
Washington, D.C. 20375-5000

Mr. Richard Stevens

Naval Research Laboratory
4555 Overlook Avenue, SW
Washington, D.C. 20375-5000

Mr. Paul J. Hays

Mail Stop 473

Langley Research Center
Information Systems Division
Hamton, VA 23681-0001

LT John P. Cardany, USN
113 Mervine St.
Monterey, CA 93940-6205

Mr. W. John Pohl

1710 Springhill Ct.
Louisville, KY 40223

